DOI QR코드

DOI QR Code

EARLY WARNING FORECASTS FOR COVID-19 IN KOREA USING BAYESIAN ESTIMATION OF THE TRANSMISSION RATE

  • Byul Nim Kim (Institute for Mathematical Convergence, Kyungpook National University, Finance Fishery Manufacture Industrial Mathematics Center on Big Data, Busan National University)
  • 투고 : 2023.08.14
  • 심사 : 2023.08.30
  • 발행 : 2023.09.30

초록

Tendency prediction of daily confirmed cases is an important issue for public health authorities. To protect the tendency, we estimate the transmission rate of stochastic SEIR model for COVID-19 in Korea using particle Markov chain Monte Carlo method. The results show that the increasing and decreasing tendency of estimated transmission rate appear one or two days in advance compared to daily incidence cases, and as time evolves the standard deviation of the estimates of transmission rate reduces. Since ten months have passed since the first incident case of COVID-19 in Korea, we expect to forecast the tendency of daily confirmed cases for the next one or two days more accurately using our method.

키워드

과제정보

This research was supported by Kyungpook National University Development Project Research Fund, 2020

참고문헌

  1. Welding, J., and Neal, P. (2019). Real time analysis of epidemic data. arXiv preprint arXiv:1909.11560.
  2. Nemeth, C. (2014). Parameter estimation for state space models using sequential Monte Carlo algorithms (Doctoral dissertation, Lancaster University).
  3. Zhu, J., Chen, J., Hu, W., and Zhang, B. (2017). Big learning with Bayesian methods. National Science Review, 4(4), 627-651. https://doi.org/10.1093/nsr/nwx044
  4. Adams, BM. Banks, HT. Davidian, M. dae Kwon, H. Tran, HT. Wynne, SN. and Rosenberg, ES. Hiv dynamics: modeling, data analysis, and optimal treatment protocols. J. Comput. Appl. Math, 184 (2005), pp. 10-49. https://doi.org/10.1016/j.cam.2005.02.004
  5. Adda, P. Dimi, JL. Iggidr, A. Kamgang, JC. Sallet, G. and Tewa, JJ. General models of host-parasite systems. Global analysis, Discrete Contin. Dyn. Syst. Ser. B, 8 (2007), pp. 1-17 (electronic). https://doi.org/10.3934/dcdsb.2007.8.1
  6. Becker, Niels G. "On a general stochastic epidemic model." Theoretical Population Biology 11.1 (1977): 23-36. https://doi.org/10.1016/0040-5809(77)90004-1
  7. Watson, Ray. "An application of a martingale central limit theorem to the standard epidemic model." Stochastic Processes and Their Applications 11.1 (1981): 79-89. https://doi.org/10.1016/0304-4149(81)90023-5
  8. Sudbury, Aidan. "The proportion of the population never hearing a rumour." Journal of applied probability (1985): 443-446.
  9. Andersson, H., and T. Britton. "Lecture notes in statistics." Stochastic epidemic models and their statistical analysis 151 (2000).
  10. Roberts, Gareth O., and Osnat Stramer. "On inference for partially observed nonlinear diffusion models using the Metropolis-Hastings algorithm." Biometrika 88.3 (2001): 603-621. https://doi.org/10.1093/biomet/88.3.603
  11. Jandarov, Roman, et al. "Emulating a gravity model to infer the spatiotemporal dynamics of an infectious disease." Journal of the Royal Statistical Society: Series C: Applied Statistics (2014): 423-444.
  12. McKinley, Trevelyan, Alex R. Cook, and Robert Deardon. "Inference in epidemic models without likelihoods." The International Journal of Biostatistics 5.1 (2009).
  13. Toni, Tina, et al. "Approximate Bayesian computation scheme for parameter inference and model selection in dynamical systems." Journal of the Royal Society Interface 6.31 (2009): 187-202. https://doi.org/10.1098/rsif.2008.0172
  14. McKinley, Trevelyan J., et al. "Simulation-based Bayesian inference for epidemic models." Computational Statistics & Data Analysis 71 (2014): 434-447. https://doi.org/10.1016/j.csda.2012.12.012
  15. Andrieu, Christophe, Arnaud Doucet, and Roman Holenstein. "Particle markov chain monte carlo methods." Journal of the Royal Statistical Society: Series B (Statistical Methodology) 72.3 (2010): 269-342. https://doi.org/10.1111/j.1467-9868.2009.00736.x
  16. Ionides, Edward L., et al. "Iterated filtering." The Annals of Statistics 39.3 (2011): 1776-1802. https://doi.org/10.1214/11-AOS886
  17. Dukic, Vanja, Hedibert F. Lopes, and Nicholas G. Polson. "Tracking epidemics with Google flu trends data and a state-space SEIR model." Journal of the American Statistical Association 107.500 (2012): 1410-1426. https://doi.org/10.1080/01621459.2012.713876
  18. Koepke, Amanda A., et al. "Predictive modeling of cholera outbreaks in Bangladesh." The annals of applied statistics 10.2 (2016): 575.
  19. Auranen, Kari, et al. "Transmission of pneumococcal carriage in families: a latent Markov process model for binary longitudinal data." Journal of the American Statistical Association 95.452 (2000): 1044-1053. https://doi.org/10.1080/01621459.2000.10474301
  20. Hohle, Michael, and Erik Jorgensen. Estimating parameters for stochastic epidemics. [The Royal Veterinary and Agricultural University], Dina, 2002.
  21. Cauchemez, Simon, et al. "A Bayesian MCMC approach to study transmission of influenza: application to household longitudinal data." Statistics in medicine 23.22 (2004): 3469-3487. https://doi.org/10.1002/sim.1912
  22. Neal, Peter J., and Gareth O. Roberts. "Statistical inference and model selection for the 1861 Hagelloch measles epidemic." Biostatistics 5.2 (2004): 249-261. https://doi.org/10.1093/biostatistics/5.2.249
  23. O'Neill, Philip D. "Bayesian inference for stochastic multitype epidemics in structured populations using sample data." Biostatistics 10.4 (2009): 779-791. https://doi.org/10.1093/biostatistics/kxp031
  24. Camacho, Anton, et al. "Temporal changes in Ebola transmission in Sierra Leone and implications for control requirements: a real-time modelling study." PLoS currents 7 (2015).
  25. Funk, Sebastian, et al. "Real-time forecasting of infectious disease dynamics with a stochastic semi-mechanistic model." Epidemics 22 (2018): 56-61. https://doi.org/10.1016/j.epidem.2016.11.003
  26. Thompson, R. N., et al. "Improved inference of time-varying reproduction numbers during infectious disease outbreaks." Epidemics 29 (2019): 100356.
  27. Cori, Anne, et al. "A new framework and software to estimate time-varying reproduction numbers during epidemics." American journal of epidemiology 178.9 (2013): 1505-1512. https://doi.org/10.1093/aje/kwt133
  28. Dureau, Joseph, Konstantinos Kalogeropoulos, and Marc Baguelin. "Capturing the time-varying drivers of an epidemic using stochastic dynamical systems." Biostatistics 14.3 (2013): 541-555. https://doi.org/10.1093/biostatistics/kxs052
  29. Endo, Akira, Edwin van Leeuwen, and Marc Baguelin. "Introduction to particle Markov-chain Monte Carlo for disease dynamics modellers." Epidemics 29 (2019): 100363.
  30. Bret'o, Carles, and Edward L. Ionides. "Compound markov counting processes and their applications to modeling infinitesimally over-dispersed systems." Stochastic Processes and their Applications 121.11 (2011): 2571-2591. https://doi.org/10.1016/j.spa.2011.07.005
  31. Martcheva, M. (2015). An introduction to mathematical epidemiology (Vol. 61). New York: Springer.
  32. King, Aaron A., Dao Nguyen, and Edward L. Ionides. "Statistical inference for partially observed Markov processes via the R package pomp." arXiv preprint arXiv:1509.00503 (2015).
  33. Choi, S., Ki, M. (2020). Estimating the reproductive number and the outbreak size of COVID-19 in Korea. Epidemiology and health, 42.
  34. Ki, M. (2020). Epidemiologic characteristics of early cases with 2019 novel coronavirus (2019-nCoV) disease in Korea. Epidemiology and health, 42.
  35. Doucet, Arnaud, and Adam M. Johansen. "A tutorial on particle filtering and smoothing: Fifteen years later." Handbook of nonlinear filtering 12.656-704 (2009): 3.
  36. Schon, Thomas B., et al. "Sequential Monte Carlo methods for system identification." IFAC-PapersOnLine 48.28 (2015): 775-786. https://doi.org/10.1016/j.ifacol.2015.12.224
  37. Salmond, David. "Introduction to Particle Filters for Tracking and Guidance." Advances in Missile Guidance, Control, and Estimation 20121297 (2012).
  38. Gustafsson, Fredrik. "Particle filter theory and practice with positioning applications." IEEE Aerospace and Electronic Systems Magazine 25.7 (2010): 53-82. https://doi.org/10.1109/MAES.2010.5546308
  39. Chen, Zhe. "Bayesian filtering: From Kalman filters to particle filters, and beyond." Statistics 182.1 (2003): 1-69. https://doi.org/10.1080/02331880309257
  40. Michaud, Nicholas, et al. "Sequential Monte Carlo methods in the nimble R package." arXiv preprint arXiv:1703.06206 (2017).
  41. KDCA briefing report, http://www.cdc.go.kr/npt/biz/npp/nppMain.do
  42. Jeyanathan, Mangalakumari, et al. "Immunological considerations for COVID-19 vaccine strategies." Nature Reviews Immunology (2020): 1-18.