과제정보
This research was supported by Kyungpook National University Development Project Research Fund, 2020
참고문헌
- Welding, J., and Neal, P. (2019). Real time analysis of epidemic data. arXiv preprint arXiv:1909.11560.
- Nemeth, C. (2014). Parameter estimation for state space models using sequential Monte Carlo algorithms (Doctoral dissertation, Lancaster University).
- Zhu, J., Chen, J., Hu, W., and Zhang, B. (2017). Big learning with Bayesian methods. National Science Review, 4(4), 627-651. https://doi.org/10.1093/nsr/nwx044
- Adams, BM. Banks, HT. Davidian, M. dae Kwon, H. Tran, HT. Wynne, SN. and Rosenberg, ES. Hiv dynamics: modeling, data analysis, and optimal treatment protocols. J. Comput. Appl. Math, 184 (2005), pp. 10-49. https://doi.org/10.1016/j.cam.2005.02.004
- Adda, P. Dimi, JL. Iggidr, A. Kamgang, JC. Sallet, G. and Tewa, JJ. General models of host-parasite systems. Global analysis, Discrete Contin. Dyn. Syst. Ser. B, 8 (2007), pp. 1-17 (electronic). https://doi.org/10.3934/dcdsb.2007.8.1
- Becker, Niels G. "On a general stochastic epidemic model." Theoretical Population Biology 11.1 (1977): 23-36. https://doi.org/10.1016/0040-5809(77)90004-1
- Watson, Ray. "An application of a martingale central limit theorem to the standard epidemic model." Stochastic Processes and Their Applications 11.1 (1981): 79-89. https://doi.org/10.1016/0304-4149(81)90023-5
- Sudbury, Aidan. "The proportion of the population never hearing a rumour." Journal of applied probability (1985): 443-446.
- Andersson, H., and T. Britton. "Lecture notes in statistics." Stochastic epidemic models and their statistical analysis 151 (2000).
- Roberts, Gareth O., and Osnat Stramer. "On inference for partially observed nonlinear diffusion models using the Metropolis-Hastings algorithm." Biometrika 88.3 (2001): 603-621. https://doi.org/10.1093/biomet/88.3.603
- Jandarov, Roman, et al. "Emulating a gravity model to infer the spatiotemporal dynamics of an infectious disease." Journal of the Royal Statistical Society: Series C: Applied Statistics (2014): 423-444.
- McKinley, Trevelyan, Alex R. Cook, and Robert Deardon. "Inference in epidemic models without likelihoods." The International Journal of Biostatistics 5.1 (2009).
- Toni, Tina, et al. "Approximate Bayesian computation scheme for parameter inference and model selection in dynamical systems." Journal of the Royal Society Interface 6.31 (2009): 187-202. https://doi.org/10.1098/rsif.2008.0172
- McKinley, Trevelyan J., et al. "Simulation-based Bayesian inference for epidemic models." Computational Statistics & Data Analysis 71 (2014): 434-447. https://doi.org/10.1016/j.csda.2012.12.012
- Andrieu, Christophe, Arnaud Doucet, and Roman Holenstein. "Particle markov chain monte carlo methods." Journal of the Royal Statistical Society: Series B (Statistical Methodology) 72.3 (2010): 269-342. https://doi.org/10.1111/j.1467-9868.2009.00736.x
- Ionides, Edward L., et al. "Iterated filtering." The Annals of Statistics 39.3 (2011): 1776-1802. https://doi.org/10.1214/11-AOS886
- Dukic, Vanja, Hedibert F. Lopes, and Nicholas G. Polson. "Tracking epidemics with Google flu trends data and a state-space SEIR model." Journal of the American Statistical Association 107.500 (2012): 1410-1426. https://doi.org/10.1080/01621459.2012.713876
- Koepke, Amanda A., et al. "Predictive modeling of cholera outbreaks in Bangladesh." The annals of applied statistics 10.2 (2016): 575.
- Auranen, Kari, et al. "Transmission of pneumococcal carriage in families: a latent Markov process model for binary longitudinal data." Journal of the American Statistical Association 95.452 (2000): 1044-1053. https://doi.org/10.1080/01621459.2000.10474301
- Hohle, Michael, and Erik Jorgensen. Estimating parameters for stochastic epidemics. [The Royal Veterinary and Agricultural University], Dina, 2002.
- Cauchemez, Simon, et al. "A Bayesian MCMC approach to study transmission of influenza: application to household longitudinal data." Statistics in medicine 23.22 (2004): 3469-3487. https://doi.org/10.1002/sim.1912
- Neal, Peter J., and Gareth O. Roberts. "Statistical inference and model selection for the 1861 Hagelloch measles epidemic." Biostatistics 5.2 (2004): 249-261. https://doi.org/10.1093/biostatistics/5.2.249
- O'Neill, Philip D. "Bayesian inference for stochastic multitype epidemics in structured populations using sample data." Biostatistics 10.4 (2009): 779-791. https://doi.org/10.1093/biostatistics/kxp031
- Camacho, Anton, et al. "Temporal changes in Ebola transmission in Sierra Leone and implications for control requirements: a real-time modelling study." PLoS currents 7 (2015).
- Funk, Sebastian, et al. "Real-time forecasting of infectious disease dynamics with a stochastic semi-mechanistic model." Epidemics 22 (2018): 56-61. https://doi.org/10.1016/j.epidem.2016.11.003
- Thompson, R. N., et al. "Improved inference of time-varying reproduction numbers during infectious disease outbreaks." Epidemics 29 (2019): 100356.
- Cori, Anne, et al. "A new framework and software to estimate time-varying reproduction numbers during epidemics." American journal of epidemiology 178.9 (2013): 1505-1512. https://doi.org/10.1093/aje/kwt133
- Dureau, Joseph, Konstantinos Kalogeropoulos, and Marc Baguelin. "Capturing the time-varying drivers of an epidemic using stochastic dynamical systems." Biostatistics 14.3 (2013): 541-555. https://doi.org/10.1093/biostatistics/kxs052
- Endo, Akira, Edwin van Leeuwen, and Marc Baguelin. "Introduction to particle Markov-chain Monte Carlo for disease dynamics modellers." Epidemics 29 (2019): 100363.
- Bret'o, Carles, and Edward L. Ionides. "Compound markov counting processes and their applications to modeling infinitesimally over-dispersed systems." Stochastic Processes and their Applications 121.11 (2011): 2571-2591. https://doi.org/10.1016/j.spa.2011.07.005
- Martcheva, M. (2015). An introduction to mathematical epidemiology (Vol. 61). New York: Springer.
- King, Aaron A., Dao Nguyen, and Edward L. Ionides. "Statistical inference for partially observed Markov processes via the R package pomp." arXiv preprint arXiv:1509.00503 (2015).
- Choi, S., Ki, M. (2020). Estimating the reproductive number and the outbreak size of COVID-19 in Korea. Epidemiology and health, 42.
- Ki, M. (2020). Epidemiologic characteristics of early cases with 2019 novel coronavirus (2019-nCoV) disease in Korea. Epidemiology and health, 42.
- Doucet, Arnaud, and Adam M. Johansen. "A tutorial on particle filtering and smoothing: Fifteen years later." Handbook of nonlinear filtering 12.656-704 (2009): 3.
- Schon, Thomas B., et al. "Sequential Monte Carlo methods for system identification." IFAC-PapersOnLine 48.28 (2015): 775-786. https://doi.org/10.1016/j.ifacol.2015.12.224
- Salmond, David. "Introduction to Particle Filters for Tracking and Guidance." Advances in Missile Guidance, Control, and Estimation 20121297 (2012).
- Gustafsson, Fredrik. "Particle filter theory and practice with positioning applications." IEEE Aerospace and Electronic Systems Magazine 25.7 (2010): 53-82. https://doi.org/10.1109/MAES.2010.5546308
- Chen, Zhe. "Bayesian filtering: From Kalman filters to particle filters, and beyond." Statistics 182.1 (2003): 1-69. https://doi.org/10.1080/02331880309257
- Michaud, Nicholas, et al. "Sequential Monte Carlo methods in the nimble R package." arXiv preprint arXiv:1703.06206 (2017).
- KDCA briefing report, http://www.cdc.go.kr/npt/biz/npp/nppMain.do
- Jeyanathan, Mangalakumari, et al. "Immunological considerations for COVID-19 vaccine strategies." Nature Reviews Immunology (2020): 1-18.