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EARLY WARNING FORECASTS FOR COVID-19 IN KOREA

USING BAYESIAN ESTIMATION OF THE TRANSMISSION

RATE

Byul Nim Kim

Abstract. Tendency prediction of daily confirmed cases is an important

issue for public health authorities. To protect the tendency, we estimate
the transmission rate of stochastic SEIR model for COVID-19 in Korea

using particle Markov chain Monte Carlo method. The results show that

the increasing and decreasing tendency of estimated transmission rate ap-
pear one or two days in advance compared to daily incidence cases, and

as time evolves the standard deviation of the estimates of transmission

rate reduces. Since ten months have passed since the first incident case of
COVID-19 in Korea, we expect to forecast the tendency of daily confirmed

cases for the next one or two days more accurately using our method.

1. Introduction

Mathematical models for the transmission dynamics of infectious diseases
aim at the understanding epidemiological patterns and predicting the conse-
quences of public health interventions. In most classical disease transmission
models, the transmission rate plays a role in ensuring that the model gives a
reasonable qualitative description of the disease dynamics. Instead of assuming
the transmission rate as a constant, assuming time-varying transmission rate
might be more realistic approach. In this paper, we analyze a stochastic SEIR
model with time-varying incidence rate. Accurate estimation of the transmis-
sion rate is an essential issue because it has a significant influence on model
predictions and conclusions.

Models for predicting time-variance have been studied in many ways. The
sequential Monte Carlo methods have successfully been applied to a range of
problems requiring rapid online analysis of data, such as target tracking, and
data streaming [1, 2, 3]. Typically, the Matingale methods are based on counting
process of data of infections and recoveries [6, 7, 8, 9]. The approximation meth-
ods have been the useful for diffusion process [10] and the Gaussian process [11]
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is based on the Markov jump process. Simulation-based models included the
approximate Bayesian computation methods [12, 13], pseudo-marginal meth-
ods [14] and sequential particle filter methods [13, 15, 16, 17, 18]. Traditional
agent–based data augmentation methods have been target the joint posterior
distribution of the missing data and model parameters to obtain a tractable
complete data likelihood [19, 20, 21, 22, 23].

Recently, sequential Monte Carlo methods of the parameter estimation, which
combines Bayesian estimation method with Markov chain Monte Carlo meth-
ods, were developed. Camacho et al. model the time-varying transmission rate,
βt, by a Wiener process (also known as standard Brownian motion) with positive
constraints using a stochastic SEIR framework [24]. To estimate future cases
in real time, 5000 stochastic trajectories are simulated by sampling a set of pa-
rameters and states from the joint posterior distribution for the last fitted data
point. This method is a kind of particle Markov chain Monte Carlo. Funk et
al. reconstructed a time-varying transmission rate, βt, by reforming the Cama-
cho et al.‘s Wiener process model. They adopted that the observation process
was modelled to operate on the weekly incidence, given by the number of in-
fectious individuals entering the quarantine compartment. They assumed that
the observed incidence followed a normal approximation to the negative bino-
mial distribution with reporting probability and overdispersion [25]. Thompson
et al. proposed a two-step procedure to estimate the time-dependent repro-
duction number from data informing the serial interval and from data on the
incidence of cases. They adopted Bayesian MCMC method. The first step uses
data on known pairs of index and secondary cases to estimate the serial interval
distribution; the second step estimates the time-varying reproduction number
estimated jointly from incidence data and from the posterior distribution of the
serial interval obtained in the first step. They have revised the approach of Cori
et al. for estimating with the time-dependent method [26, 27].

Unlike the traditional method of adding the Markov chain Monte Carlo meth-
ods to the ordinary differential equation methods, we combine the sequential
Monte Carlo methods with the Markov chain Monte Carlo methods to the SEIR
model in which the distribution of events with probabilistic mechanisms have a
binomial distribution. And in parameter estimation, we assume the number of
infectious patients is proportional to the number of quarantine patients, unlike
the existing method using conceptually ambiguous incidence data. As a result
we have an estimation of the transmission rate with standard deviation for each
time. The estimations of the transmission rate give us to early forecast the
tendency of the incidence.
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2. Data and Method

2.1. Data

To estimate the transmission parameter, the daily data from the Korea Dis-
ease Control and Prevention Agency (KDCA) were analyzed and the cases con-
firmed between February 8, 2020 to April 9, 2020 were used [41]. The data
provide daily domestic confirmed cases and daily confirmed inflow-cases from
foreign countries and cases discharged from quarantine authorities. We excluded
the inflow-cases from the confirmed cases, in that those are immediately quar-
antined once they are confirmed at the National Quarantine Station in Korean
territory so they have no chance to transmit the disease in Korea. As shown in
Figure 1(A), the occurrence in Korea increased rapidly in the early stages, and
then gradually calmed down after about 60 days. The number of quarantined
or isolated cases is displayed in Figure 1(B), which taken as the cumulative
confirmed cases minus the cumulative discharged by quarantine authorities and
deaths.

2.2. Methods

The underlying mathematical model for COVID-19 infection is the determin-
istic Kermack and McKendric SEIR model, where the population is divided into
four groups, including susceptible (S), exposed (E), infectious (I), and recovered
or death (R):

dS

dt
= −βIS/N

dE

dt
= βIS/N − κE

dI

dt
= κE − γI

dR

dt
= γI

Transmission rate (β) explains how many effective contacts occur in suscepti-
ble class and βIS/N is the number of individuals newly infected and κ is the
per capita rate of being infectious. Usually, the length of the latent period is
obtained 1/κ, and the mean time spent in the infectious class is used for 1/γ.

In the real world where these processes are applied, each compartment changes
to an increment over time, so we can formulate the dynamic deterministic parts
as continuous time Markov chain (CTMC) in a discrete time model, i.e., we
can convert the preceding deterministic parts into counting processes as follows
[32].
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(a) The number of daily confirmed domestic cases of COVID-19 in
Korea

(b) The number of quarantine or isolated cases of COVID-19 in Korea

Figure 1. KDCA Data from February 8 to April 9 in Korea
[41].

St+1 = St −∆SE

Et+1 = Et +∆SE −∆EI

It+1 = It +∆EI −∆IR

Rt+1 = Rt +∆IR

The numbers of individuals within each compartment change through time in
increments as discrete variation amounts between compartments occur. The
notation ∆AB represents the number of individuals moving from A to B during
the time interval [t, t+∆t). For example, ∆SI is the number of people infected
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or infectious from susceptible class in ∆t. Two events ∆SE , ∆EI , ∆IR of
”outcome” are possible: becoming infected or recovering. Each event has the
binomial distribution with the outcome probability of an event, induced by its
hazard function, as follows [20].

∆SE ∼ B(St, 1− e−βtIt/N )

∆EI ∼ B(Et, 1− e−κ)

∆IR ∼ B(It, 1− e−γ)

For estimating the transmission rate βt, we adopt the statistical technique, so
called Particle filter (PF) or sequential Monte Carlo (SMC) [36, 35, 37, 38, 39],
to recursively explore conditional densities in state-space models. For given
values of θ, N particles (x̃i

j) are sequentially propagated from t0 to tn. In each
step ti, the trajectories that best fit the data y1:i are given more weight through
importance sampling techniques. Given the observation data y1:k up to time k,
the posterior distribution π(x1:n, θ|y1:n) is defined using the PF methods. And
in order to sample from π(x1:n, θ|y1:n), we use the popular Bayesian method, so
called particle Markov chain Monte Carlo (PMCMC), which combines PF and
MCMC [15]. In this paper, in particular, we used the Bootstrap filter method,
which is the simplest method of PF, and the Metropolis-Hastings algorithm,
which is the classical system, as the MCMC algorithm [40]. The procedures
for these two methods are as follows, where the observed data yt is quarantine
patients, the latent variables xt are exposed (E) and recoveries (R), and the
parameters we should estimate are time-varying βT . Here we assume that the
number of infectious patients (It) is proportional to the numbers of quarantine
patients The reason we use the assumption will be discussed in Discussion and
Conclusions.

3. Results

In the simulation of PMCMC, we assume the hierarchical prior distribution
of the transmission parameter βt to be Beta(α1, α2), the prior of α1 and α2 to
be Beta(1, 1), and the parameters κ, γ for COVID-19 in Korea to be 1

7 ,
1
14 ,

respectively [33].
Figure 2 represents the relation between the estimate of βt and daily incidence

cases. The increasing and the decreasing tendency of estimated βt appear one
or two days in advance compared to the daily incident cases. The increasing
(decreasing) tendency of βt from time t to t+1 shows the increasing (decreasing,
respectively) tendency of daily incidence cases from time t to t+1 or (from time
t + 1 to t + 2). For close look, we show the cross-correlation in Figure 2b and
2c. The highest one occurs at lag +1 (Cross-correlation: 0.952 with 95 % CI)
and the second highest one occurs at lag +2 (Cross-correlation: 0.930 with 95
% CI), implying that the estimation of βt is highly related to the number of
daily incidence cases on later one or two days.
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Procedure: Particle MCMC

Choose an initial value β
(0)
T ;

for m← 1 to M do

Generate x
(m)
0 ∼ f(x0);

Set π
(m)
0 = 1

M ;

end

for t← 1 to T do
for m← 1 to M do

Generate x̃
(m)
t ∼ q(xt|x(m)

t−1, yt);

Calculate unnormalized weight w
(m)
t =

f(x̃
(m)
t |x(m)

t−1)g(yt|x̃(m)
t )

q(x̃
(m)
t |x(m)

t−1,yt)
π
(m)
t−1 ;

end

for m← 1 to M do

Normalize w
(m)
t as π

(m)
t =

w
(m)
t∑M

i=1 w
(i)
t

;

end

for m← 1 to M do
Sample an index jm from the set 1, . . . ,M with probabilities

{π(m)
t }Mm=1;

Set x
(m)
t = x̃

(jm)
t ;

Set π
(m)
t = 1

M ;

end

Calculate p̃(yt|1:t−1) =
1
M

∑M
m=1 w

(m)
t ;

end

Draw x
(0)
1:T ∼ p(x1:T |y1:T , β(0)

T ) by sampling with its full state history;

for i← 1 to I do

Generate β∗
T ∼ q(βT |β(i−1)

T );

Calculate unnormalized weight w
(m)
t =

f(x̃
(m)
t |g(yt|x̃(m)

t )

q(x̃
(m)
t |x(m)

t−1,yt)
π
(m)
t−1 ;

Obtain the marginal likelihood estimate p̃(y1:T |β∗
T );

Draw x∗
1:T ∼ p(x1:T |y1:T , β∗

T ) by sampling with its full state history;

Compute a∗ = min

[
1,

p̃(y1:T |β∗
T )p(β∗

T )

p̃(i−1)p(β
(i−1)
T )

q(β
(i−1)
T |β∗

T )

q(β∗
T |β(i−1)

T )

]
;

Generate r ∼ U(0, 1);

if a∗ > r then

Set β
(i)
T = β∗

T , x
(i)
1:T = x∗

1:T , and p̃(i) = p̃(y1:T |β∗
T );

else

Set β
(i)
T = β

(i−1)
T , x

(i)
1:T = x

(i−1)
1:T , and p̃(i) = p̃(i−1);

end

end
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We represent the posterior distribution of βt between February 23 and March
13 in Figure 3. The posterior distributions of the first five days in the period are
positioned sparsely and have a large standard deviation compared to the other
days. As the estimation of βt increases, we have a larger standard deviation;
after the highest peak of the estimation of βt, the standard deviation and βt

decrease simultaneously. During the small fluctuation of βt after the highest
peak, the standard deviation also fluctuates. As time evolves, the standard
deviations are getting smaller.

4. Discussions

The preceding tendency of estimated βt to daily incidence cases as shown
in Figure 2 is useful in practice. We see that the increasing and decreasing
tendency of estimated βt appear one or two days in advance compared to daily
incidence cases. Therefore, if we can estimate βt in COVID-19 at the current
time, we may predict the increasing or decreasing daily incidence cases for the
next one or two day in advance. As we see in Figure 3, as time evolves, the
standard deviation of βt is getting small such that the estimate of βt will be
more accurate than the early stage, The estimation of βt is a vital tool for
predicting daily incidence cases, because we have data for ten months since the
first incident case to inform our model.

Once the Korean governmental surveillance system detects a person, there is
no more chance to transmit. Hence, when we apply the data of daily confirmed
cases to the SEIR compartment model, we should not identify the confirmed
date data as the data of onset date on the same day. M. Ki [34] analyzed the
KCDA raw data of 28 confirmed patients in Korea and could discriminate the
onset date and the date detected by surveillance. The results showed that there
is an average of 4 days difference. Such analysis could be possible, because
the number of those data is small, and such confidential data are available to
the author. However, the onset date information is not available to researchers
but also too big to figure the onset date out for each case. The promising
candidate based mathematical model for COVID-19 in Korea to estimate of
the transmission rate might be in Figure 4. In Section 2, we assumed that the
number of infectious patients (It) is proportional to the numbers of quarantine
patients (Qt) to apply It to the SEIR model, not to the SEIQR model in Figure
4. The government should provide more detailed information for each incidence
case so that the researcher can estimate the transmission rate βt with small
standard deviation, which predicts the tendency for daily incidence cases more
accurately and earlier in advance.
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(a) The estimated βt vs. daily incidence cases

(b) The cross-correlation plot between estimated βt and daily inci-
dence cases.

Lag -10 -9 -8 -7 -6 -5 -4
Cross-correlation 0.357 0.377 0.429 0.491 0.555 0.603 0.635

Lag -3 -2 -1 0 1 2 3
Cross-correlation 0.661 0.739 0.824 0.901 0.952 0.930 0.855

Lag 4 5 6 7 8 9 10
Cross-correlation 0.751 0.635 0.639 0.574 0.542 0.481 0.359

(c) The cross-correlation between estimated βt and daily incidence cases.

Figure 2. The preceding tendency of estimated βt to daily
incidence cases
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(a) The percentile estimates of βt (b) standard deviation of βt

(c) The posterior distribution of βt

Figure 3. The daily density estimations of βt

Figure 4. Flow chart for COVID-19 transmission dynamics.

Acknowledgement

This research was supported by Kyungpook National University Develop-
ment Project Research Fund, 2020



502 BN KIM

References

[1] Welding, J., and Neal, P. (2019). Real time analysis of epidemic data. arXiv preprint

arXiv:1909.11560.
[2] Nemeth, C. (2014). Parameter estimation for state space models using sequential Monte

Carlo algorithms (Doctoral dissertation, Lancaster University).

[3] Zhu, J., Chen, J., Hu, W., and Zhang, B. (2017). Big learning with Bayesian methods.
National Science Review, 4(4), 627-651.

[4] Adams, BM. Banks, HT. Davidian, M. dae Kwon, H. Tran, HT. Wynne, SN. and Rosen-

berg, ES. Hiv dynamics: modeling, data analysis, and optimal treatment protocols. J.
Comput. Appl. Math, 184 (2005), pp. 10–49.

[5] Adda, P. Dimi, JL. Iggidr, A. Kamgang, JC. Sallet, G. and Tewa, JJ. General models
of host-parasite systems. Global analysis, Discrete Contin. Dyn. Syst. Ser. B, 8 (2007),

pp. 1–17 (electronic).

[6] Becker, Niels G. ”On a general stochastic epidemic model.” Theoretical Population Bi-
ology 11.1 (1977): 23-36.

[7] Watson, Ray. ”An application of a martingale central limit theorem to the standard

epidemic model.” Stochastic Processes and Their Applications 11.1 (1981): 79-89.
[8] Sudbury, Aidan. ”The proportion of the population never hearing a rumour.” Journal of

applied probability (1985): 443-446.

[9] Andersson, H., and T. Britton. ”Lecture notes in statistics.” Stochastic epidemic models
and their statistical analysis 151 (2000).

[10] Roberts, Gareth O., and Osnat Stramer. ”On inference for partially observed nonlinear

diffusion models using the Metropolis–Hastings algorithm.” Biometrika 88.3 (2001): 603-
621.

[11] Jandarov, Roman, et al. ”Emulating a gravity model to infer the spatiotemporal dynamics

of an infectious disease.” Journal of the Royal Statistical Society: Series C: Applied
Statistics (2014): 423-444.

[12] McKinley, Trevelyan, Alex R. Cook, and Robert Deardon. ”Inference in epidemic models
without likelihoods.” The International Journal of Biostatistics 5.1 (2009).

[13] Toni, Tina, et al. ”Approximate Bayesian computation scheme for parameter inference

and model selection in dynamical systems.” Journal of the Royal Society Interface 6.31
(2009): 187-202.

[14] McKinley, Trevelyan J., et al. ”Simulation-based Bayesian inference for epidemic models.”

Computational Statistics & Data Analysis 71 (2014): 434-447.
[15] Andrieu, Christophe, Arnaud Doucet, and Roman Holenstein. ”Particle markov chain

monte carlo methods.” Journal of the Royal Statistical Society: Series B (Statistical
Methodology) 72.3 (2010): 269-342.

[16] Ionides, Edward L., et al. ”Iterated filtering.” The Annals of Statistics 39.3 (2011): 1776-

1802.
[17] Dukic, Vanja, Hedibert F. Lopes, and Nicholas G. Polson. ”Tracking epidemics with

Google flu trends data and a state-space SEIR model.” Journal of the American Statistical

Association 107.500 (2012): 1410-1426.
[18] Koepke, Amanda A., et al. ”Predictive modeling of cholera outbreaks in Bangladesh.”

The annals of applied statistics 10.2 (2016): 575.

[19] Auranen, Kari, et al. ”Transmission of pneumococcal carriage in families: a latent Markov
process model for binary longitudinal data.” Journal of the American Statistical Associ-

ation 95.452 (2000): 1044-1053.
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