DOI QR코드

DOI QR Code

단일 빔 음향 집게를 이용한 바이오메디컬 응용 연구

Single beam acoustic tweezers for biomedical applications

  • Hae Gyun Lim (Department of Biomedical Engineering, Pukyong National University)
  • 투고 : 2023.06.30
  • 심사 : 2023.08.31
  • 발행 : 2023.09.30

초록

음파의 힘을 이용하는 음향집게는 나노 단위의 세포외소포에서 밀리미터 단위의 대규모 다세포생 물체까지 다양한 생체 입자를 조작하는 데 사용되는 매우 유용한 도구이다. 해당 분야는 수십년간 점진적인 개발이 이루어지고 있으며, 단일 초음파 빔을 사용하는 단일 빔 음향 집게(Single Beam Acoustic Tweezers, SBAT)기술 또한 세포 및 생물체 정밀 이동 및 분석이 가능한 플랫폼으로 발전했다. 최근 혁신적인 발전으로 SBAT를 이용하여 입자/세포 분리, 단일 세포 변형 기술이 개발되었으며 이로 인해 의공학 분야에서 학문적인 관심을 모으고 있다. 본 종설에서 SBAT기술의 기초 원리와 작동 방법에 대해서 설명하며 그간의 연구를 요약하고 이를 바탕으로 향후 연구에 대해서 전망한다.

Acoustic tweezers represent an exceptionally versatile and adaptable collection of instruments that harness the intrinsic power of sound waves to manipulate a wide spectrum of bioparticles, ranging from minuscule extracellular vesicles at the nanoscale to more substantial multicellular organisms measuring in millimeters. This field of research has witnessed remarkable progress over the course of the past few decades, primarily in the domain of Single Beam Acoustic Tweezers (SBAT) which utilizes a single element transducer for its operation. Initially conceived as a method for particle trapping, SBAT has since evolved into an advanced platform capable of achieving precise translation of cells and organisms. Recent groundbreaking advancements have significantly enhanced the capabilities of SBAT, unlocking new functionalities such as particle/cell separation and controlled deformation of single cells. These advancements have propelled SBAT to the forefront of bioparticle/cell manipulation, gathering attention within the scientific community. This review explores the core principles of SBAT and how sound waves affect bioparticles/cells. We aim to build a strong conceptual foundation for understanding advancements in this field by detailing its principles and methodologies.

키워드

과제정보

This research was funded by a Research Grant from Pukyong National University (2023).

참고문헌

  1. A. Ozcelik, J. Rufo, F. Guo, Y. Gu, P. Li, J. Lata, and T. J. Huang, "Acoustic tweezers for the life sciences," Nat Methods, 15, 1021-1028 (2018).
  2. Z. Zhou, Z. Hou, and Y. Pei, "Reconfigurable particle swarm robotics powered by acoustic vibration tweezer," Soft Robotics, 8, 735-743 (2020).
  3. J. R. Wu, "Acoustical tweezers," J. Acoust. Soc. Am. 89, 2140-2143 (1991). https://doi.org/10.1121/1.400907
  4. G. T. Silva and A. L. Baggio, "Designing single-beam multitrapping acoustical tweezers," Ultrasonics, 56, 449-455 (2015). https://doi.org/10.1016/j.ultras.2014.09.010
  5. F. Guo, Z. Mao, Y. Chen, Z. Xie, J. P. Lata, P. Li, L. Ren, J. Liu, J. Yang, M. Dao, S. Suresh, and T. J. Huang, "Three-dimensional manipulation of single cells using surface acoustic waves," Proc. Natl. Acad. Sci. USA, 113, 1522-1527 (2016). https://doi.org/10.1073/pnas.1524813113
  6. A. Ashkin, "Trapping of atoms by resonance radiation pressure," Phys. Rev. Lett. 40, 729-732 (1978). https://doi.org/10.1103/PhysRevLett.40.729
  7. A. Ashkin, J. M. Dziedzic, J. E. Bjorkholm, and S. Chu, "Observation of a single-beam gradient force optical trap for dielectric particles," Opt Lett. 11, 288-290 (1986).
  8. H. G. Lim, Y. Li, M.-Y. Lin, C. Yoon, C. Lee, H. Jung, R. H. Chow, and K. K. Shung, "Calibration of trapping force on cell-size objects from ultra-high frequency single beam acoustic tweezer," IEEE Trans. Ultrason. Ferroelectr. Freq. Control, 63, 1988-1995 (2016).
  9. H. G. Lim, H. H. Kim, and C. Yoon, "Evaluation method for acoustic trapping performance by tracking motion of trapped microparticle," Jpn. J. Appl. Phys. 57, 057202 (2018).
  10. F. Gesellchen, A. Bernassau, T. Dejardin, D. R. S. Cumming, and M. O. Riehle, "Cell patterning with a heptagon acoustic tweezer - application in neurite guidance," Lab on a Chip, 14, 2266-2275 (2014).
  11. H. G. Lim, H. H. Kim, C. Yoon, and K. K. Shung, "A one-sided acoustic trap for cell immobilization using 30-MHz array transducer," IEEE Trans. Ultrason. Ferroelectr. Freq. Control, 67, 167-172 (2020).
  12. K. H. Lam, Y. Li, Y. Li, H. G. Lim, Q. Zhou, and K. K. Shung, "Multifunctional single beam acoustic tweezer for non-invasive cell/organism manipulation and tissue imaging," Sci. Rep. 6, 37554 (2016).
  13. M. G. Kim, J. Park, H. G. Lim, S. Yoon, C.Lee, J. H. Chang, and K. K. Shung, "Label-free analysis of the characteristics of a single cell trapped by acoustic tweezers," Sci. Rep. 7, 14092 (2017).
  14. H. G. Lim and K. K. Shung, "Quantification of inter-erythrocyte forces with ultra-high frequency (410 MHz) single beam acoustic tweezer," Ann. Biomed. Eng. 45, 2174-2183 (2017).
  15. H. Jung, K. K. Shung, and H. G. Lim, "Ultrasonic high-resolution imaging and acoustic tweezers using ultrahigh frequency transducer: Integrative single-cell analysis," Sensors (Basel), 23, 1-13 (2023).
  16. H.-C. Liu, E. J. Gang, H. N Kim, H. G. Lim, H. Jung, R. Chen, H. Adbel-Azim, K. K. Shung, Y.-M. Kim, "Characterizing deformability of drug resistant patient-derived Acute Lymphoblastic Leukemia (ALL) cells using acoustic tweezers," Sci. Rep. 8, 15708 (2018).
  17. H. G. Lim, H.-C. Liu, C. W. Yoon, H. Jung, M. G. Kim, C. Yoon, H. H. Kim, and K. K. Shung, "Investigation of cell mechanics using single-beam acoustic tweezers as a versatile tool for the diagnosis and treatment of highly invasive breast cancer cell lines: an in vitro study," Microsyst. Nanoeng. 6, 1-12 (2020).
  18. J. Yoo, H. Kim, Y. Kim, H. G. Lim, and H. H. Kim, "Collapse pressure measurement of single hollow glass microsphere using single-beam acoustic tweezer," Ultrason. Sonochem. 82, 105844 (2022).
  19. J. Y. Hwang, J. Kim, J. M. Park, C. Lee, H. Jung, J. Lee, and K. K. Shung, "Cell deformation by single-beam acoustic trapping: a promising tool for measurements of cell mechanics," Sci. Rep. 6, 27238 (2016).
  20. S. Youn, K. Lee, J. Son, I. H. Yang, and J. Y. Hwang, "Fully-automatic deep learning-based analysis for determination of the invasiveness of breast cancer cells in an acoustic trap," Biomed. Opt. Express, 11, 2976-2995 (2020). https://doi.org/10.1364/BOE.390558
  21. S. Youn, J. W. Choi, J. S. Lee, J. Kim, I.-H. Yang, J. H. Chang, H. C. Kim, and J. Y. Hwang, "Acoustic trapping technique for studying calcium response of a suspended breast cancer cell: Determination of its invasion potentials," IEEE Trans. Ultrason. Ferroelectr. Freq. Control, 66, 737-746 (2019).
  22. H. G. Lim, O.-J. Lee, K. K. Shung, J.-T. Kim, and H. H. Kim, "Classification of breast cancer cells using the integration of high-frequency single-beam acoustic tweezers and convolutional neural networks," Cancers (Basel), 12, 1212 (2020).
  23. H.-J. Jeon, H. G. Lim, K. K. Shung, O.-J. Lee, and M. G. Kim, "Automated cell-type classification combining dilated convolutional neural networks with label-free acoustic sensing," Sci. Rep. 12, 19873 (2022).
  24. O.-J. Lee, H. G. Lim, K. K. Shung, J.-T. Kim, and H. H. Kim, "Automated estimation of cancer cell deformability with machine learning and acoustic trapping," Sci Rep. 12, 6891 (2022).
  25. J. Lee, S.-Y. Teh, A. Lee, H. H. Kim, C. Lee, and K. K. Shung, "Single beam acoustic trapping," Appl. Phys. Lett. 95, 73701 (2009).
  26. M. Baudoin, J.-L. Thomas, R. A. Sahely, J.-C. Gerbedoen, Z. Gong, A. Sivery, O. B. Matar, N. Smagin, P. Favreau, and A. Vlandas, "Spatially selective manipulation of cells with single-beam acoustical tweezers," Nat. Commun. 11, 4244 (2020).