DOI QR코드

DOI QR Code

Controlling interlayer spacing of GO membranes via the insertion of GN for high separation performance

  • Xuan Liu (College of Engineering, Shanghai Ocean University) ;
  • Zhu Zhou (College of Engineering, Shanghai Ocean University) ;
  • Hengzhang Dai (College of Engineering, Shanghai Ocean University) ;
  • Kuang Ma (College of Engineering, Shanghai Ocean University) ;
  • Yafei Zhang (Ministry of Education Key Laboratory for Thin Membrane and Microfabrication Technology, Research Institute of Micro/Nanometer Science and Technology, Shanghai Jiao Tong University) ;
  • Bin Li (Research Center for Photovoltaics, Shanghai Institute of Space Power-Sources)
  • 투고 : 2020.12.23
  • 심사 : 2023.06.28
  • 발행 : 2023.05.25

초록

Graphene oxide (GO) membranes have attracted extensive attention in water treatment and related fields. However, GO films are unstable and have low permeability, which have hindered their further development. In this paper, a simple and effective method was used in which GO and single-layer graphene (GN) were mixed, and the layer spacing was effectively controlled by accurately controlling the ratio of GO to GN. GO-GN composite membranes have excellent stability, salt rejection (95.4%), and water flux (26 L m-2 h-1 bar-1). This unique design structure can be used for precise and effective regulation of the layer spacing in GO, improving the rejection rate, and increasing water flux via the enhancement of low-friction capillary action. The rational development and use of this unique composite membrane provides a reference for the water treatment field.

키워드

과제정보

This work was supported by the National Natural Science Foundation of China (Grant No.51005145 and 51075258), Shanghai Engineering Research Center of Marine Renewable Energy (Grant No.19DZ2254800), and the Instrumental Analysis Center and the Center for Advanced Electronic Materials and Devices of Shanghai Jiao Tong University.

참고문헌

  1. Abraham, J., Vasu, K.S., Williams, C.D., Gopinadhan, K., Su, Y., Cherian, C.T., Dix, J., Prestat, E., Haigh, S.J., Grigorieva, I.V., Carbone, P., Geim, A.K. and Nair, R.R. (2017), "Tunable sieving of ions using graphene oxide membranes", Nature Nanotechnol., 12, 546-550. https://doi.org/10.1038/nnano.2017.21.
  2. Buelke, C., Alshami, A., Casler, J., Lin, Y., Hickner, M. and Aljundi, I.H. (2019), "Evaluating graphene oxide and holey graphene oxide membrane performance for water purification", J. Membr. Sci., 588, 117195. https://doi.org/10.1016/j.memsci.2019.117195.
  3. Chandio, I., Janjhi, F.A., Memon, A.A., Memon, S., Ali, Z., Thebo, K.H., Pirzado, A.A.A., Hakro., A.A. and Khan, W.S. (2020), "Ultrafast ionic and molecular sieving through graphene oxide based composite membranes", Desalination, 500, 114848. https://doi.org/10.1016/j.desal.2020.114848.
  4. Chen, L., Li, N., Wen, Z., Zhang, L., Chen, Q., Chen, L., Si, P., Feng, J., Li , Y., Lou, J and Ci, L. (2018), "Graphene oxide based membrane intercalated by nanoparticles for high performance nanofiltration application", Chem. Eng. J., 12-18. https://doi.org/10.1016/j.cej.2018.04.069.
  5. Chen, X., Qiu, M., Ding, H., Fu, K. and Fan, Y. (2016), "A reduced graphene oxide nanofiltration membrane intercalated by well-dispersed carbon nanotubes for drinking water purification", Nanoscale, 8, 696-705. https://doi.org/10.1039/c5nr08697c.
  6. Fan, X., Cai, C., Gao, J., Han, X. and Li, J. (2020), "Hydrothermal reduced graphene oxide membranes for dyes removing", Sep. Purif. Technol., 241, 116730. https://doi.org/10.1016/j.seppur.2020.116730.
  7. Haan, T.Y., Shah, M., Chun, H.K. and Mohammad, A.W. (2018), "A study on membrane technology for surface water treatment: Synthesis, characterization and performance test", Membr. Water Treat., 9(2), 69-77. http://doi.org/10.12989/mwt.2018.9.2.069
  8. Han, Y., Jiang, Y. and Gao, C. (2015), "High-flux graphene oxide nanofiltration membrane intercalated by carbon nanotubes", ACS Appl. Mater. Interf., 7, 8147. https://doi.org/10.1021/acsami.5b00986.
  9. Hirunpinyopas, W., Iamprasertkun, P., Bissett, M.A. and Dryfe, R.A. (2019), "Tunable charge/size selective ion sieving with ultrahigh water permeance through laminar graphene membranes", Carbon, 156, 119-129. https://doi.org/10.1016/j.carbon.2019.09.030.
  10. Huang, H.H., Joshi, R.K., De Silva, K.K.H., Badam, R. and Yoshimura, M. (2019), "Fabrication of reduced graphene oxide membranes for water desalination", J. Membr. Sci., 572, 12-19. https://doi.org/10.1016/j.memsci.2018.10.085.
  11. Hung, W.S., Lin, T.J., Chiao, Y.H., Sengupta, A., Hsiao, Y.C., Wickramasinghe, S.R., Hu, C.C., Lee, K.R. and Lai, J.Y. (2018), "Graphene-induced tuning of the d-spacing of graphene oxide composite nanofiltration membranes for frictionless capillary action-induced enhancement of water permeability", J. Mater. Chem. A, 6, 19445-19454. https://doi.org/10.1039/C8TA08155G.
  12. Jin, S., Gao, Q., Zeng, X., Zhang, R., Liu, K., Shao, X. and Jin, M. (2015), "Effects of reduction methods on the structure and thermal conductivity of free-standing reduced graphene oxide films", Diamond Relat. Mater., 54-61. https://doi.org/10.1016/j.diamond.2015.06.005.
  13. Li, S., Lu, J., Zou, D., Cui, L., Chen, B., Wang, F., Qiu, J., Yu, T., Sun, Y. and Jing, W. (2022), "Constructing reduced porous graphene oxide for tailoring mass-transfer channels in ultrathin MXene (Ti3C2Tx) membranes for efficient dye/salt separation", Chem. Eng. J., 457,141217. https://doi.org/10.1016/j.cej.2022.141217.
  14. Li, W., Wu, W. and Li, Z. (2018), "Controlling interlayer spacing of graphene oxide membranes by external pressure regulation", ACS Nano,12, 9309-9317. https://doi.org/10.1021/acsnano.8b04187.
  15. Liang, S., Wang, S., Chen, L. and Fang, H. (2020), "Controlling interlayer spacings of graphene oxide membranes with cationic for precise sieving of mono-/multi-valent ions", Sep. Purif. Technol., 241, 116738. https://doi.org/10.1016/j.seppur.2020.116738
  16. Liu, T., Liu, X., Graham, N., Yu, W. and Sun, K. (2019), "Two-dimensional MXene incorporated graphene oxide composite membrane with enhanced water purification performance", J. Membr. Sci., 593, 117431. https://doi.org/10.1016/j.memsci.2019.117431.
  17. Lyu, J., Wen, X., Kumar, U., You, Y., Chen, V. and Joshi, R.K. (2018), "Separation and purification using GO and r-GO membranes", RSC Adv., 8, 23130-23151. https://doi.org/10.1039/C8RA03156H.
  18. Moradi, R., Shariaty-Niassar, M., Pourkhalili, N., Mehrizadeh, M. and Niknafs, H. (2018), "PVDF/h-BN hybrid membranes and their application in desalination through AGMD", Membr. Water Treat., 9(4), 221-231. http://doi.org/10.12989/mwt.2018.9.4.221.
  19. Pachfule, P., Shinde, D., Majumder, M. and Xu, Q. (2016), "Fabrication of carbon nanorods and graphene nanoribbons from a metal-organic framework", Nature Chem., 8, 18-24. https://doi.org/10.1038/nchem.2515.
  20. Pei, S., Zhao, J., Du, J., Ren, W. and Cheng, H.M (2010), "Direct reduction of graphene oxide films into highly conductive and flexible graphene films by hydrohalic acids", Carbon, 48, 4466-4474. https://doi.org/10.1016/j.carbon.2010.08.006.
  21. Shao, F., Hu, N., Su, Y., Yao, L., Li, B., Zou, C., Li, G., Zhang, C., Li, H., Yang, Z. and Zhang, Y. (2020), "Non-woven fabric electrodes based on graphene-based fibers for areal-energy-dense flexible solid-state supercapacitors", Chem. Eng. J., 392, 123692. https://doi.org/10.1016/j.cej.2019.123692.
  22. Sun, Y., Yu, F., Li, C., Dai, X. and Ma, J. (2020), "Nano-/micro-confined water in graphene hydrogel as superadsorbents for water purification", Nano Micro Lett., 12, 1-14. https://doi.org/10.1007/s40820-019-0336-3.
  23. Sur, U. K., Saha, A., Datta, A., Ankamwar, B., Surti, F., Roy, S. D. and Roy, D. (2016), "Synthesis and characterization of stable aqueous dispersions of graphene", Bull. Mater. Sci., 39, 1-7. https://doi.org/10.1007/s12034-015-0893-0.
  24. Syama, S. and Mohanan, P.V. (2019), "Comprehensive application of graphene: Emphasis on biomedical concerns", Nano Micro Lett., 11,97-127. https://doi.org/10.1007/s40820-019-0237-5.
  25. Tang, S., Jin, S., Zhang, R., Liu, Y., Wang, J., Hu, Z., Lu, W., Yang, S., Qiao, W., Ling, L. and Jin, M. (2019), "Effective reduction of graphene oxide via a hybrid microwave heating method by using mildly reduced graphene oxide as a susceptor", Appl. Surf. Sci., 473, 222-229. https://doi.org/10.1016/j.apsusc.2018.12.096.
  26. Thebo, K.H., Qian, X., Zhang, Q., Chen, L., Cheng, H.M. and Ren, W. (2018), "Highly stable graphene-oxide-based membranes with superior permeability", Nature Commun., 9, 1486. https://doi.org/10.1038/s41467-018-03919-0.
  27. Tiwari, S.K., Sahoo, S., Wang, N. and Huczko, A. (2020), "Graphene Research and their Outputs: Status and Prospect", J. Sci. Adv. Mater. Devices, 5, 10-29. https://doi.org/10.1016/j.jsamd.2020.01.006.
  28. Toh, S.Y., Loh, K.S., Kamarudin, S.K. and Daud, W.R.W. (2014), "Graphene production via electrochemical reduction of graphene oxide: Synthesis and characterisation", Chem. Eng. J., 251, 422-434. https://doi.org/10.1016/j.cej.2014.04.004.
  29. Singh, V., Joung, D., Zhai, L., Das, S., Khondaker, S.I. and Seal, S. (2011), "Graphene based materials: Past, present and future", Prog. Mater. Sci., 56, 1178-1271. https://doi.org/10.1016/j.pmatsci.2011.03.003.
  30. Wan, Z., Wang, S., Haylock, B., Kaur, J., Tanner, P., Thiel, D., Sang, R., Cole, I.S., Li, X., Lobino, M. and Li, Q. (2019), "Tuning the sub-processes in laser reduction of graphene oxide by adjusting the power and scanning speed of laser", Carbon, 141, 83-91. https://doi.org/10.1016/j.carbon.2018.09.030.
  31. Wang, Q., Zhao, G., Li, C. and Meng, H. (2019), "Orderly stacked ultrathin graphene oxide membranes on a macroporous tubular ceramic substrate", J. Membr. Sci., 586, 177-184. https://doi.org/10.1016/j.memsci.2019.05.051.
  32. Wang, X., Li, N., Zhao, Y. and Xia, S. (2018), "Preparation of graphene oxide incorporated polyamide thin-film composite membranes for PPCPs removal", Membr. Water Treat., 9(4), 211-220. https://doi.org/10.12989/mwt.2018.9.4.211
  33. Wei, Y., Zhu, Y. and Jiang, Y. (2019), "Photocatalytic self-cleaning carbon nitride nanotube intercalated reduced graphene oxide membranes for enhanced water purification", Chem. Eng. J., 356, 915-925. https://doi.org/10.1016/j.cej.2018.09.108.
  34. Xi, Y.H., Hu, J.Q., Liu, Z., Xie, R., Ju, X.J., Wang, W. and Chu, L.Y. (2018), "Graphene oxide membranes with strong stability in aqueous solutions and controllable lamellar spacing", ACS Appl. Mater. Interf., 8, 15557-15566. https://doi.org/10.1021/acsami.6b00928.
  35. Xu, Q., Xu, H., Chen, J., Lv, Y., Dong, C. and Sreeprasad, T.S. (2015), "Graphene and graphene oxide: advanced membranes for gas separation and water purification", Inorgan. Chem. Front., 46, 417-424. https://doi.org/10.1002/chin.201530322.
  36. Ye, Z., Yang, L., Wang, Y., Jia, F., Li, Z., Yu, D., Mao, X., Huang, L. and Tang, J. (2023), "Graphene oxide membranes intercalated with titanium dioxide nanorods for fast infiltration and dye separation", FlatChem, 38, 100488. https://doi.org/10.1016/j.flatc.2023.100488
  37. You, Y., Sahajwalla, V., Yoshimura, M. and Joshi, R.K. (2016), "Graphene and graphene oxide for desalination", Nanoscale, 8, 117-119. https://doi.org/10.1039/C5NR06154G.
  38. Yu, W. and Graham, N. (2017), "Development of a stable cation modified graphene oxide membrane for water treatment", 2D Mater., 4, 045006. https://doi.org/10.1088/2053-1583/aa814c.
  39. Zhang, H., Quan, X., Chen, S., Fan, X., Wei, G. and Yu, H. (2018), "Combined effects of surface charge and pore size on co-enhanced permeability and ion selectivity through RGO-OCNT nanofiltration membranes", Environ. Sci. Technol., 52(8), 4827- 4834. https://doi.org/10.1021/acs.est.8b00515.
  40. Zhang, N., Qi, W., Huang, L., Jiang, E., Bao, J., Zhang, X., An, B. and He, G. (2019), "Review on structural control and modification of graphene oxide-based membranes in water treatment: From separation performance to robust operation", Chinese J. Chem. Eng., 27, 1348-1360. https://doi.org/10.1016/j.cjche.2019.01.001
  41. Zhang, Q., Qian, X., Thebo, K.H., Cheng, H.M. and Ren, W. (2018), "Controlling reduction degree of graphene oxide membranes for improved water permeance", Sci. Bull., 63, 788-794. https://doi.org/10.1016/j.scib.2018.05.015.
  42. Zhang, Y. and Chung, T.S. (2017), "Graphene oxide membranes for nanofiltration", Curr. Op. Chem. Eng., 16, 9-15. https://doi.org/10.1016/j.coche.2017.03.002.
  43. Zhao, G., Hu, R., Zhao, X., He, Y. and Zhu, H. (2019), "High flux nanofiltration membranes prepared with a graphene oxide homo-structure", J. Membr. Sci., 585, 29-37. https://doi.org/10.1016/j.memsci.2019.05.028.
  44. Zheng, S., Tu, Q., Urban, J.J., Li, S. and Mi, B. (2017), "Swelling of graphene oxide membranes in aqueous solution: Characterization of interlayer spacing and insight into water transport mechanisms", Acs Nano, 11, 6440-6450. https://doi.org/10.1021/acsnano.7b02999.