DOI QR코드

DOI QR Code

Muscimol as a treatment for nerve injury-related neuropathic pain: a systematic review and meta-analysis of preclinical studies

  • Hamzah Adel Ramawad (Department of Emergency Medicine, NYC Health + Hospitals) ;
  • Parsa Paridari (Physiology Research Center, Iran University of Medical Sciences) ;
  • Sajjad Jabermoradi (Physiology Research Center, Iran University of Medical Sciences) ;
  • Pantea Gharin (Physiology Research Center, Iran University of Medical Sciences) ;
  • Amirmohammad Toloui (Physiology Research Center, Iran University of Medical Sciences) ;
  • Saeed Safari (Men's Health and Reproductive Health Research Center, Shahid Beheshti University of Medical Sciences) ;
  • Mahmoud Yousefifard (Physiology Research Center, Iran University of Medical Sciences)
  • 투고 : 2023.06.02
  • 심사 : 2023.08.01
  • 발행 : 2023.10.01

초록

Background: Muscimol's quick onset and GABAergic properties make it a promising candidate for the treatment of pain. This systematic review and meta-analysis of preclinical studies aimed at summarizing the evidence regarding the efficacy of muscimol administration in the amelioration of nerve injury-related neuropathic pain. Methods: Two independent researchers performed the screening process in Medline, Embase, Scopus and Web of Science extracting data were extracted into a checklist designed according to the PRISMA guideline. A standardized mean difference (SMD [95% confidence interval]) was calculated for each. To assess the heterogeneity between studies, 2 and chi-square tests were utilized. In the case of heterogeneity, meta-regression and subgroup analyses were performed to identify the potential source. Results: Twenty-two articles met the inclusion criteria. Pooled data analysis showed that the administration of muscimol during the peak effect causes a significant reduction in mechanical allodynia (SMD = 1.78 [1.45-2.11]; P < 0.0001; I2 = 72.70%), mechanical hyperalgesia (SMD = 1.62 [1.28-1.96]; P < 0.0001; I2 = 40.66%), and thermal hyperalgesia (SMD = 2.59 [1.79-3.39]; P < 0.0001; I2 = 80.33%). This significant amendment of pain was observed at a declining rate from 15 minutes to at least 180 minutes post-treatment in mechanical allodynia and mechanical hyperalgesia, and up to 30 minutes in thermal hyperalgesia (P < 0 .0001). Conclusions: Muscimol is effective in the amelioration of mechanical allodynia, mechanical hyperalgesia, and thermal hyperalgesia, exerting its analgesic effects 15 minutes after administration for up to at least 3 hours.

키워드

과제정보

This study was supported by the Men's Health and Reproductive Health Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran.

참고문헌

  1. Chen J, Kandle PF, Murray IV, Fitzgerald LA, Sehdev JS. Physiology, pain. StatPearls [Internet]. StatPearls Publishing; 2023. Available at: https://www.ncbi.nlm.nih.gov/books/NBK539789/#article-26536.s1
  2. Lee S, Zhao X, Hatch M, Chun S, Chang E. Central neuropathic pain in spinal cord injury. Crit Rev Phys Rehabil Med 2013; 25: 159-72. https://doi.org/10.1615/CritRevPhysRehabilMed.2013007944
  3. Norouzkhani N, Chaghian Arani R, Mehrabi H, Bagheri Toolaroud P, Ghorbani Vajargah P, Mollaei A, et al. Effect of virtual reality-based interventions on pain during wound care in burn patients; a systematic review and meta-analysis. Arch Acad Emerg Med 2022; 10: e84.
  4. Farahmand Rad R, Zolfaghari Sadrabad A, Jafari M, Ghilian M. Efficacy of sumatriptan/placebo versus sumatriptan/propofol combination in acute migraine; a randomized clinical trial. Arch Acad Emerg Med 2022; 10: e27.
  5. Hunt C, Moman R, Peterson A, Wilson R, Covington S, Mustafa R, et al. Prevalence of chronic pain after spinal cord injury: a systematic review and meta-analysis. Reg Anesth Pain Med 2021; 46: 328-36. https://doi.org/10.1136/rapm-2020-101960
  6. Jensen TS, Baron R, Haanpaa M, Kalso E, Loeser JD, Rice ASC, et al. A new definition of neuropathic pain. Pain 2011; 152: 2204-5. https://doi.org/10.1016/j.pain.2011.06.017
  7. Scholz J, Finnerup NB, Attal N, Aziz Q, Baron R, Bennett MI, et al.; Classification Committee of the Neuropathic Pain Special Interest Group (NeuPSIG). The IASP classification of chronic pain for ICD-11: chronic neuropathic pain. Pain 2019; 160: 53-9. https://doi.org/10.1097/j.pain.0000000000001365
  8. Miclescu A, Straatmann A, Gkatziani P, Butler S, Karlsten R, Gordh T. Chronic neuropathic pain after traumatic peripheral nerve injuries in the upper extremity: prevalence, demographic and surgical determinants, impact on health and on pain medication. Scand J Pain 2019; 20: 95-108. https://doi.org/10.1515/sjpain-2019-0111
  9. Burke D, Fullen BM, Stokes D, Lennon O. Neuropathic pain prevalence following spinal cord injury: a systematic review and meta-analysis. Eur J Pain 2017; 21: 29-44. https://doi.org/10.1002/ejp.905
  10. Finnerup NB, Johannesen IL, Sindrup SH, Bach FW, Jensen TS. Pain and dysesthesia in patients with spinal cord injury: a postal survey. Spinal Cord 2001; 39: 256-62. https://doi.org/10.1038/sj.sc.3101161
  11. Deng Y, Luo L, Hu Y, Fang K, Liu J. Clinical practice guidelines for the management of neuropathic pain: a systematic review. BMC Anesthesiol 2016; 16: 12.
  12. Bates D, Schultheis BC, Hanes MC, Jolly SM, Chakravarthy KV, Deer TR, et al. A comprehensive algorithm for management of neuropathic pain. Pain Med 2019; 20(Suppl 1): S2-S12. Erratum in: Pain Med 2023; 24: 219.
  13. Bernetti A, Agostini F, de Sire A, Mangone M, Tognolo L, Di Cesare A, et al. Neuropathic pain and rehabilitation: a systematic review of international guidelines. Diagnostics (Basel) 2021; 11: 74.
  14. Cavalli E, Mammana S, Nicoletti F, Bramanti P, Mazzon E. The neuropathic pain: an overview of the current treatment and future therapeutic approaches. Int J Immunopathol Pharmacol 2019; 33: 2058738419838383.
  15. Azizkhani R, Shahnazari Sani M, Heydari F, Saber M, Mousavi S. Topical lidocaine plus diclofenac as a local anesthetic agent in central venous catheterization; a randomized controlled clinical trial. Arch Acad Emerg Med 2021; 9: e63.
  16. Hinton T, Johnston GAR. GABA, the major inhibitory neurotransmitter in the brain. Reference Module in Biomedical Sciences. Elsevier. 2018.
  17. Duncan BR. Volatile anesthetics and O2 activate TASK-1/3 by weak H-bonding with X-gate uncharged Arg-245: the major molecular mechanism for carotid body hypoxic sensitivity and further insights into fighter pilot +Gz-induced LOC. OSF Preprints [Preprint]. doi: 10.31219/osf.io/y7z6e
  18. Johnston GA. Muscimol as an ionotropic GABA receptor agonist. Neurochem Res 2014; 39: 1942-7. https://doi.org/10.1007/s11064-014-1245-y
  19. Li YH, Hsu DZ, Liu CT, Chandrasekaran VRM, Liu MY. The protective effect of muscimol against systemic inflammatory response in endotoxemic mice is independent of GABAergic and cholinergic receptors. Can J Physiol Pharmacol 2022; 100: 665-78. https://doi.org/10.1139/cjpp-2021-0682
  20. Hollister LE. New class of hallucinogens: GABA-enhancing agents. Drug Dev Res 1990; 21: 253-6. https://doi.org/10.1002/ddr.430210311
  21. Wei D, Tang K, Wang Q, Estill J, Yao L, Wang X, et al. The use of GRADE approach in systematic reviews of animal studies. J Evid Based Med 2016; 9: 98-104. https://doi.org/10.1111/jebm.12198
  22. Hama A, Sagen J. Combinations of intrathecal gamma-amino-butyrate receptor agonists and N-methyl-d-aspartate receptor antagonists in rats with neuropathic spinal cord injury pain. Eur J Pharmacol 2012; 683: 101-8. https://doi.org/10.1016/j.ejphar.2012.03.015
  23. Hosseini M, Karami Z, Janzadenh A, Jameie SB, Haji Mashhadi Z, Yousefifard M, et al. The effect of intrathecal administration of muscimol on modulation of neuropathic pain symptoms resulting from spinal cord injury; an experimental study. Emerg (Tehran) 2014; 2: 151-7.
  24. Hosseini M, Karami Z, Yousefifard M, Janzadeh A, Zamani E, Nasirinezhad F. Simultaneous intrathecal injection of muscimol and endomorphin-1 alleviates neuropathic pain in rat model of spinal cord injury. Brain Behav 2020; 10: e01576.
  25. Jeon YH, Yoon DM, Nam TS, Leem JW, Paik GS. Spinal and peripheral GABA-A and B receptor agonists for the alleviation of mechanical hypersensitivity following compressive nerve injury in the rat. Korean J Pain 2006; 19: 22-32. https://doi.org/10.3344/kjp.2006.19.1.22
  26. Lee J, Back SK, Lim EJ, Cho GC, Kim MA, Kim HJ, et al. Are spinal GABAergic elements related to the manifestation of neuropathic pain in rat? Korean J Physiol Pharmacol 2010; 14: 59-69. https://doi.org/10.4196/kjpp.2010.14.2.59
  27. Lee MC, Nam TS, Jung SJ, Gwak YS, Leem JW. Modulation of spinal GABAergic inhibition and mechanical hypersensitivity following chronic compression of dorsal root ganglion in the rat. Neural Plast 2015; 2015: 924728.
  28. Moon HC, Lee YJ, Cho CB, Park YS. Suppressed GABAergic signaling in the zona incerta causes neuropathic pain in a thoracic hemisection spinal cord injury rat model. Neurosci Lett 2016; 632: 55-61. https://doi.org/10.1016/j.neulet.2016.08.035
  29. Moon HC, Park YS. Reduced GABAergic neuronal activity in zona incerta causes neuropathic pain in a rat sciatic nerve chronic constriction injury model. J Pain Res 2017; 10: 1125-34. https://doi.org/10.2147/JPR.S131104
  30. Pedersen LH, Scheel-Kruger J, Blackburn-Munro G. Amygdala GABA-A receptor involvement in mediating sensory-discriminative and affective-motivational pain responses in a rat model of peripheral nerve injury. Pain 2007; 127: 17-26. https://doi.org/10.1016/j.pain.2006.06.036
  31. Jiang H, Fang D, Kong LY, Jin ZR, Cai J, Kang XJ, et al. Sensitization of neurons in the central nucleus of the amygdala via the decreased GABAergic inhibition contributes to the development of neuropathic pain-related anxiety-like behaviors in rats. Mol Brain 2014; 7: 72.
  32. Rashid MH, Ueda H. Neuropathy-specific analgesic action of intrathecal nicotinic agonists and its spinal GABA-mediated mechanism. Brain Res 2002; 953: 53-62. https://doi.org/10.1016/S0006-8993(02)03270-5
  33. Rode F, Jensen DG, Blackburn-Munro G, Bjerrum OJ. Centrally-mediated antinociceptive actions of GABA(A) receptor agonists in the rat spared nerve injury model of neuropathic pain. Eur J Pharmacol 2005; 516: 131-8. https://doi.org/10.1016/j.ejphar.2005.04.034
  34. Sadeghi M, Manaheji H, Zaringhalam J, Haghparast A, Nazemi S, Bahari Z, et al. Evaluation of the GAB-AA receptor expression and the effects of muscimol on the activity of wide dynamic range neurons following chronic constriction injury of sciatic nerve in rats. Basic Clin Neurosci 2021; 12: 651-66. https://doi.org/10.32598/bcn.2021.1726.1
  35. Seno MDJ, Assis DV, Gouveia F, Antunes GF, Kuroki M, Oliveira CC, et al. The critical role of amygdala subnuclei in nociceptive and depressive-like behaviors in peripheral neuropathy. Sci Rep 2018; 8: 13608.
  36. Wei H, Viisanen H, Pertovaara A. Descending modulation of neuropathic hypersensitivity by dopamine D2 receptors in or adjacent to the hypothalamic A11 cell group. Pharmacol Res 2009; 59: 355-63. https://doi.org/10.1016/j.phrs.2009.01.001
  37. Yowtak J, Wang J, Kim HY, Lu Y, Chung K, Chung JM. Effect of antioxidant treatment on spinal GABA neurons in a neuropathic pain model in the mouse. Pain 2013; 154: 2469-76. https://doi.org/10.1016/j.pain.2013.07.024
  38. Zarrindast MR, Mahmoudi M. GABA mechanisms and antinociception in mice with ligated sciatic nerve. Pharmacol Toxicol 2001; 89: 79-84. https://doi.org/10.1111/j.1600-0773.2001.890203.x
  39. Dias QM, Prado WA. The lesion of dorsolateral funiculus changes the antiallodynic effect of the intrathecal muscimol and baclofen in distinct phases of neuropathic pain induced by spinal nerve ligation in rats. Brain Res Bull 2016; 124: 103-15. https://doi.org/10.1016/j.brainresbull.2016.04.001
  40. Gwak YS, Tan HY, Nam TS, Paik KS, Hulsebosch CE, Leem JW. Activation of spinal GABA receptors attenuates chronic central neuropathic pain after spinal cord injury. J Neurotrauma 2006; 23: 1111-24. https://doi.org/10.1089/neu.2006.23.1111
  41. Hwang JH, Yaksh TL. The effect of spinal GABA receptor agonists on tactile allodynia in a surgically-induced neuropathic pain model in the rat. Pain 1997; 70: 15-22. https://doi.org/10.1016/S0304-3959(96)03249-6
  42. LaGraize SC, Fuchs PN. GABAA but not GABAB receptors in the rostral anterior cingulate cortex selectively modulate pain-induced escape/avoidance behavior. Exp Neurol 2007; 204: 182-94. https://doi.org/10.1016/j.expneurol.2006.10.007
  43. Nasirinezhad F, Hosseini M, Karami Z, Janzadeh A, Yousefifard M. Comparative efficacy of GABAA and GABAB receptor agonists in pain alleviation in a spinal cord injury model of neuropathic pain. Neurophysiology 2019; 51: 322-31. https://doi.org/10.1007/s11062-020-09826-9
  44. Xu Q, Yaksh TL. A brief comparison of the pathophysiology of inflammatory versus neuropathic pain. Curr Opin Anaesthesiol 2011; 24: 400-7. https://doi.org/10.1097/ACO.0b013e32834871df
  45. Kocot-Kepska M, Zajaczkowska R, Mika J, Wordliczek J, Dobrogowski J, Przeklasa-Muszynska A. Peripheral mechanisms of neuropathic pain-the role of neuronal and non-neuronal interactions and their implications for topical treatment of neuropathic pain. Pharmaceuticals (Basel) 2021; 14: 77.
  46. Campbell JN, Meyer RA. Mechanisms of neuropathic pain. Neuron 2006; 52: 77-92. https://doi.org/10.1016/j.neuron.2006.09.021
  47. Enna SJ, McCarson KE. The role of GABA in the mediation and perception of pain. Adv Pharmacol 2006; 54: 1-27. https://doi.org/10.1016/S1054-3589(06)54001-3
  48. Kondeva-Burdina M, Voynova M, Shkondrov A, Aluani D, Tzankova V, Krasteva I. Effects of Amanita muscaria extract on different in vitro neurotoxicity models at sub-cellular and cellular levels. Food Chem Toxicol 2019; 132: 110687.
  49. Miletic G, Draganic P, Pankratz MT, Miletic V. Muscimol prevents long-lasting potentiation of dorsal horn field potentials in rats with chronic constriction injury exhibiting decreased levels of the GABA transporter GAT-1. Pain 2003; 105: 347-53. https://doi.org/10.1016/S0304-3959(03)00250-1
  50. Terayama R, Uchibe K. Reorganization of synaptic inputs to spinal dorsal horn neurons in neuropathic pain. Int J Neurosci 2022; 132: 1210-6. https://doi.org/10.1080/00207454.2021.1873980
  51. Disorbo A, Wilson GN, Bacik S, Hoxha Z, Biada JM, Mickley GA. Time-dependent retrograde amnesic effects of muscimol on conditioned taste aversion extinction. Pharmacol Biochem Behav 2009; 92: 319-26. https://doi.org/10.1016/j.pbb.2008.12.020
  52. Puschner B. Mushroom toxins. In: Veterinary toxicology. Edited by Gupta RC. Academic Press. 2007, pp 915-25.
  53. Waldvogel HJ, Baer K, Faull RLM. Distribution of GABAA receptor subunits in the human brain. In: GABA and sleep: molecular, functional and clinical aspects. Edited by Monti JM, Pandi-Perumal SR, Mohler H. Springer Basel. 2010, pp 73-93.
  54. Ochoa-de la Paz LD, Gulias-Canizo R, Ruiz-Leyja ED, Sanchez-Castillo H, Parodi J. The role of GABA neurotransmitter in the human central nervous system, physiology, and pathophysiology. Rev Mex Neuroci 2021; 22: 67-76. https://doi.org/10.24875/RMN.20000050
  55. Moss MJ, Hendrickson RG. Toxicity of muscimol and ibotenic acid containing mushrooms reported to a regional poison control center from 2002-2016. Clin Toxicol (Phila) 2019; 57: 99-103. https://doi.org/10.1080/15563650.2018.1497169
  56. Ahmadzadeh K, Roshdi Dizaji S, Yousefifard M. Lack of concordance between reporting guidelines and risk of bias assessments of preclinical studies: a call for integrated recommendations. Int J Surg 2023; 109: 2557-8. https://doi.org/10.1097/JS9.0000000000000475
  57. Shiao R, Lee-Kubli CA. Neuropathic pain after spinal cord injury: challenges and research perspectives. Neurotherapeutics 2018; 15: 635-53. https://doi.org/10.1007/s13311-018-0633-4
  58. Gray P. Acute neuropathic pain: diagnosis and treatment. Curr Opin Anaesthesiol 2008; 21: 590-5. https://doi.org/10.1097/ACO.0b013e32830c900c