DOI QR코드

DOI QR Code

Involvement of the spinal γ-aminobutyric acid receptor in the analgesic effects of intrathecally injected hypertonic saline in spinal nerve-ligated rats

  • Myong-Hwan Karm (Department of Dental Anesthesiology, School of Dentistry and Dental Research Institute, Seoul National University) ;
  • Hyun-Jung Kwon (Department of Anesthesiology and Pain Medicine, Asan Medical Center, University of Ulsan College of Medicine) ;
  • Euiyong Shin (Department of Anesthesiology and Pain Medicine, Asan Medical Center, University of Ulsan College of Medicine) ;
  • Honggyoon Bae (Department of Anesthesiology and Pain Medicine, Gangneung Asan Hospital, University of Ulsan College of Medicine) ;
  • Young Ki Kim (Department of Anesthesiology and Pain Medicine, Gangneung Asan Hospital, University of Ulsan College of Medicine) ;
  • Seong-Soo Choi (Department of Anesthesiology and Pain Medicine, Asan Medical Center, University of Ulsan College of Medicine)
  • 투고 : 2023.06.02
  • 심사 : 2023.08.05
  • 발행 : 2023.10.01

초록

Background: Hypertonic saline is used for treating chronic pain; however, clinical studies that aid in optimizing therapeutic protocols are lacking. We aimed to determine the concentration of intrathecally injected hypertonic saline at which the effect reaches its peak as well as the underlying γ-aminobutyric acid (GABA) receptor-related antinociceptive mechanism. Methods: Spinal nerve ligation (SNL; left L5 and L6) was performed to induce neuropathic pain in rats weighing 250-300 g. Experiment 1: one week after implanting the intrathecal catheter, 60 rats were assigned randomly to intrathecal injection with 0.45%, 0.9%, 2.5%, 5%, 10%, and 20% NaCl, followed by behavioral testing at baseline and after 30 minutes, 2 hours, 1 day, and 1 week to determine the minimal concentration which produced maximal analgesia. Experiment 2: after determining the optimal intrathecal hypertonic saline concentration, 60 rats were randomly divided into four groups: Sham, hypertonic saline without pretreatment, and hypertonic saline after pretreatment with one of two GABA receptor antagonists (GABAA [bicuculline], or GABAB [phaclofen]). Behavioral tests were performed at weeks 1 and 3 following each treatment. Results: Hypertonic saline at concentrations greater than 5% alleviated SNL-induced mechanical allodynia and had a significant therapeutic effect, while showing a partial time- and dose-dependent antinociceptive effect on thermal and cold hyperalgesia. However, pretreatment with GABA receptor antagonists inhibited the antinociceptive effect of 5% NaCl. Conclusions: This study indicates that the optimal concentration of hypertonic saline for controlling mechanical allodynia in neuropathic pain is 5%, and that its analgesic effect is related to GABAA and GABAB receptors.

키워드

과제정보

The authors wish to express their gratitude to the Dental Research Institute of Seoul National University for providing an English language review of the manuscript.

참고문헌

  1. Hitchcock E. Osmolytic neurolysis for intractable facial pain. Lancet 1969; 1: 434-6.  https://doi.org/10.1016/S0140-6736(69)91479-2
  2. Hitchcock E, Prandini MN. Hypertonic saline in management of intractable pain. Lancet 1973; 1: 310-2.  https://doi.org/10.1016/S0140-6736(73)91552-3
  3. Lucas JT, Ducker TB, Perot PL Jr. Adverse reactions to intrathecal saline injection for control of pain. J Neurosurg 1975; 42: 557-61.  https://doi.org/10.3171/jns.1975.42.5.0557
  4. Thompson GE. Pulmonary edema complicating intrathecal hypertonic saline injection for intractable pain. Anesthesiology 1971; 35: 425-7.  https://doi.org/10.1097/00000542-197110000-00020
  5. Racz GB, Heavner JE, Singleton W, Carline M. Hypertonic saline and corticosteroid injected epidurally for pain control. In: Techniques of neurolysis. Edited by Racz GB. Springer US. 1989, pp 73-86. 
  6. Joo EY, Koh WU, Choi SS, Choi JH, Ahn HS, Yun HJ, et al. Efficacy of adjuvant 10% hypertonic saline in transforaminal epidural steroid injection: a retrospective analysis. Pain Physician 2017; 20: E107-14.  https://doi.org/10.36076/ppj.2017.1.E107
  7. Koh WU, Choi SS, Park SY, Joo EY, Kim SH, Lee JD, et al. Transforaminal hypertonic saline for the treatment of lumbar lateral canal stenosis: a doubleblinded, randomized, active-control trial. Pain Physician 2013; 16: 197-211.  https://doi.org/10.36076/ppj.2013/16/197
  8. Lee Y, Kim S, Shin JW, Leem JG, Choi SS. Adjuvant administration of hypertonic saline in lumbar epidural intervention may be associated with successful response in patients with probable neuropathic radicular pain Screened by Douleur Neuropathique 4. Int J Med Sci 2021; 18: 2736-42.  https://doi.org/10.7150/ijms.59695
  9. Karm MH, Kim CS, Kim DH, Lee D, Kim Y, Shin JW, et al. Effectiveness of percutaneous epidural neuroplasty using a balloon catheter in patients with chronic spinal stenosis accompanying mild spondylolisthesis: a longitudinal cohort study. Korean J Pain 2023; 36: 184-94.  https://doi.org/10.3344/kjp.22289
  10. Heavner JE, Racz GB, Raj P. Percutaneous epidural neuroplasty: prospective evaluation of 0.9% NaCl versus 10% NaCl with or without hyaluronidase. Reg Anesth Pain Med 1999; 24: 202-7.  https://doi.org/10.1016/S1098-7339(99)90128-1
  11. Manchikanti L, Rivera JJ, Pampati V, Damron KS, McManus CD, Brandon DE, et al. One day lumbar epidural adhesiolysis and hypertonic saline neurolysis in treatment of chronic low back pain: a randomized, double-blind trial. Pain Physician 2004; 7: 177-86.  https://doi.org/10.36076/ppj.2004/7/177
  12. Choi EJ, Yoo YJ, Lee PB, Kim YC, Lee SC, Moon JY. A retrospective study to evaluate the effect of concentration of hypertonic saline on efficacy and safety of epidural adhesiolysis. Anesth Analg 2017; 124: 2021-9.  https://doi.org/10.1213/ANE.0000000000001925
  13. Lee F, Jamison DE, Hurley RW, Cohen SP. Epidural lysis of adhesions. Korean J Pain 2014; 27: 3-15.  https://doi.org/10.3344/kjp.2014.27.1.3
  14. Watanabe M, Maemura K, Kanbara K, Tamayama T, Hayasaki H. GABA and GABA receptors in the central nervous system and other organs. Int Rev Cytol 2002; 213: 1-47.  https://doi.org/10.1016/S0074-7696(02)13011-7
  15. Jensen ML, Timmermann DB, Johansen TH, Schousboe A, Varming T, Ahring PK. The beta subunit determines the ion selectivity of the GABAA receptor. J Biol Chem 2002; 277: 41438-47.  https://doi.org/10.1074/jbc.M205645200
  16. Sieghart W, Sperk G. Subunit composition, distribution and function of GABA(A) receptor subtypes. Curr Top Med Chem 2002; 2: 795-816.  https://doi.org/10.2174/1568026023393507
  17. Price TJ, Cervero F, Gold MS, Hammond DL, Prescott SA. Chloride regulation in the pain pathway. Brain Res Rev 2009; 60: 149-70.  https://doi.org/10.1016/j.brainresrev.2008.12.015
  18. Kim SH, Nam JS, Choi DK, Koh WW, Suh JH, Song JG, et al. Tumor necrosis factor-alpha and apoptosis following spinal nerve ligation injury in rats. Korean J Pain 2011; 24: 185-90.  https://doi.org/10.3344/kjp.2011.24.4.185
  19. Kim SH, Chung JM. An experimental model for peripheral neuropathy produced by segmental spinal nerve ligation in the rat. Pain 1992; 50: 355-63.  https://doi.org/10.1016/0304-3959(92)90041-9
  20. Yaksh TL, Rudy TA. Chronic catheterization of the spinal subarachnoid space. Physiol Behav 1976; 17: 1031-6.  https://doi.org/10.1016/0031-9384(76)90029-9
  21. Chaplan SR, Bach FW, Pogrel JW, Chung JM, Yaksh TL. Quantitative assessment of tactile allodynia in the rat paw. J Neurosci Methods 1994; 53: 55-63.  https://doi.org/10.1016/0165-0270(94)90144-9
  22. Li Y, Dorsi MJ, Meyer RA, Belzberg AJ. Mechanical hyperalgesia after an L5 spinal nerve lesion in the rat is not dependent on input from injured nerve fibers. Pain 2000; 85: 493-502.  https://doi.org/10.1016/S0304-3959(00)00250-5
  23. Deuis JR, Dvorakova LS, Vetter I. Methods used to evaluate pain behaviors in rodents. Front Mol Neurosci 2017; 10: 284. 
  24. Biella GE, Groppetti A, Novelli A, Fernandez-Sanchez MT, Manfredi B, Sotgiu ML. Neuronal sensitization and its behavioral correlates in a rat model of neuropathy are prevented by a cyclic analog of orphenadrine. J Neurotrauma 2003; 20: 593-601.  https://doi.org/10.1089/089771503767168519
  25. Malan TP, Mata HP, Porreca F. Spinal GABA(A) and GABA(B) receptor pharmacology in a rat model of neuropathic pain. Anesthesiology 2002; 96: 1161-7.  https://doi.org/10.1097/00000542-200205000-00020
  26. Hara K, Haranishi Y, Kataoka K, Takahashi Y, Terada T, Nakamura M, et al. Chlorogenic acid administered intrathecally alleviates mechanical and cold hyperalgesia in a rat neuropathic pain model. Eur J Pharmacol 2014; 723: 459-64.  https://doi.org/10.1016/j.ejphar.2013.10.046
  27. Hitchcock E. Hypothermic subarachnoid irrigation for intractable pain. Lancet 1967; 1: 1133-5.  https://doi.org/10.1016/S0140-6736(67)91709-6
  28. King JS, Jewett DL, Sundberg HR. Differential blockade of cat dorsal root C fibers by various chloride solutions. J Neurosurg 1972; 36: 569-83.  https://doi.org/10.3171/jns.1972.36.5.0569
  29. Anderson SR, Racz GB, Heavner J. Evolution of epidural lysis of adhesions. Pain Physician 2000; 3: 262-70.  https://doi.org/10.36076/ppj.2000/3/262
  30. Gerdesmeyer L, Wagenpfeil S, Birkenmaier C, Veihelmann A, Hauschild M, Wagner K, et al. Percutaneous epidural lysis of adhesions in chronic lumbar radicular pain: a randomized, double-blind, placebo- controlled trial. Pain Physician 2013; 16: 185-96.  https://doi.org/10.36076/ppj.2013/16/185
  31. Jewett DL, King JS. Conduction block of monkey dorsal rootlets by water and hypertonic saline solutions. Exp Neurol 1971; 33: 225-37.  https://doi.org/10.1016/0014-4886(71)90116-6
  32. Enna SJ, McCarson KE. The role of GABA in the mediation and perception of pain. Adv Pharmacol 2006; 54: 1-27.  https://doi.org/10.1016/S1054-3589(06)54001-3
  33. Zeilhofer HU, Benke D, Yevenes GE. Chronic pain states: pharmacological strategies to restore diminished inhibitory spinal pain control. Annu Rev Pharmacol Toxicol 2012; 52: 111-33.  https://doi.org/10.1146/annurev-pharmtox-010611-134636
  34. Hwang JH, Yaksh TL. The effect of spinal GABA receptor agonists on tactile allodynia in a surgicallyinduced neuropathic pain model in the rat. Pain 1997; 70: 15-22.  https://doi.org/10.1016/S0304-3959(96)03249-6
  35. Sokal DM, Chapman V. Effects of spinal administration of muscimol on C- and A-fibre evoked neuronal responses of spinal dorsal horn neurones in control and nerve injured rats. Brain Res 2003; 962: 213-20.  https://doi.org/10.1016/S0006-8993(02)04057-X
  36. Loomis CW, Khandwala H, Osmond G, Hefferan MP. Coadministration of intrathecal strychnine and bicuculline effects synergistic allodynia in the rat: an isobolographic analysis. J Pharmacol Exp Ther 2001; 296: 756-61. 
  37. Anseloni VC, Gold MS. Inflammation-induced shift in the valence of spinal GABA-A receptor-mediated modulation of nociception in the adult rat. J Pain 2008; 9: 732-8.  https://doi.org/10.1016/j.jpain.2008.03.004
  38. Sivilotti L, Woolf CJ. The contribution of GABAA and glycine receptors to central sensitization: disinhibition and touch-evoked allodynia in the spinal cord. J Neurophysiol 1994; 72: 169-79.  https://doi.org/10.1152/jn.1994.72.1.169
  39. Caba M, Gonzalez-Mariscal G, Beyer C. Perispinal progestins enhance the antinociceptive effects of muscimol in the rat. Pharmacol Biochem Behav 1994; 47: 177-82.  https://doi.org/10.1016/0091-3057(94)90128-7
  40. Dirig DM, Yaksh TL. Intrathecal baclofen and muscimol, but not midazolam, are antinociceptive using the rat-formalin model. J Pharmacol Exp Ther 1995; 275: 219-27.