DOI QR코드

DOI QR Code

Intron retention decreases METTL3 expression by inhibiting mRNA export to the cytoplasm

  • Sangsoo Lee (Department of Biochemistry, College of Natural Sciences, Chungnam National University) ;
  • Haesoo Jung (Department of Biochemistry, College of Natural Sciences, Chungnam National University) ;
  • Sunkyung Choi (Department of Biochemistry, College of Natural Sciences, Chungnam National University) ;
  • Namjoon Cho (Department of Biochemistry, College of Natural Sciences, Chungnam National University) ;
  • Eun-Mi Kim (Department of Predictive Toxicology, Korea Institute of Toxicology) ;
  • Kee Kwang Kim (Department of Biochemistry, College of Natural Sciences, Chungnam National University)
  • 투고 : 2023.04.29
  • 심사 : 2023.06.20
  • 발행 : 2023.09.30

초록

Methyltransferase-like 3 (METTL3), a key component of the m6A methyltransferase complex, regulates the splicing, nuclear transport, stability, and translation of its target genes. However, the mechanism underlying the regulation of METTL3 expression by alternative splicing (AS) remains unknown. We analyzed the expression pattern of METTL3 after AS in human tissues and confirmed the expression of an isoform retaining introns 8 and 9 (METTL3-IR). We confirmed the different intracellular localizations of METTL3-IR and METTL3 proteins using immunofluorescence microscopy. Furthermore, the endogenous expression of METTL3-IR at the protein level was different from that at the mRNA level. We found that 3'-UTR generation by intron retention (IR) inhibited the export of METTL3-IR mRNA to the cytoplasm, which in turn suppressed protein expression. To the best of our knowledge, this is the first study to confirm the regulation of METTL3 gene expression by AS, providing evidence that the suppression of METTL3 protein expression by IR is an integral part of the mechanism by which 3'-UTR generation regulates protein expression via inhibition of RNA export to the cytoplasm.

키워드

과제정보

This work was supported by a National Research Foundation of Korea Grant [NRF-2022R1A2C1003870]; Korea Environment Industry & Technology Institute (KEITI) through the Environment Health Action Program, funded by Korea Ministry of Environment (MOE) [2022002960005].

참고문헌

  1. Black DL (2000) Protein diversity from alternative splicing: a challenge for bioinformatics and post-genome biology. Cell 103, 367-370 https://doi.org/10.1016/S0092-8674(00)00128-8
  2. Lareau LF, Green RE, Bhatnagar RS and Brenner SE (2004) The evolving roles of alternative splicing. Curr Opin Struct Biol 14, 273-282 https://doi.org/10.1016/j.sbi.2004.05.002
  3. Nilsen TW and Graveley BR (2010) Expansion of the eukaryotic proteome by alternative splicing. Nature 463, 457-463 https://doi.org/10.1038/nature08909
  4. Pan Q, Shai O, Lee LJ, Frey J and Blencowe BJ (2008) Deep surveying of alternative splicing complexity in the human transcriptome by high-throughput sequencing. Nat Genet 40, 1413-1415 https://doi.org/10.1038/ng.259
  5. Wahl MC, Will CL and Luhrmann R (2009) The Spliceosome: design principles of a dynamic RNP machine. Cell 136, 701-718 https://doi.org/10.1016/j.cell.2009.02.009
  6. Tabrez SS, Sharma RD, Jain V, Siddiqui AA and Mukhopadhyay A (2017) Differential alternative splicing coupled to nonsense-mediated decay of mRNA ensures dietary restriction-induced longevity. Nat Commun 8, 306
  7. Moon H, Zheng XX, Loh TJ et al (2017) Effects of PTCs on nonsense-mediated mRNA decay are dependent on PTC location. Oncol Lett 13, 1944-1948 https://doi.org/10.3892/ol.2017.5627
  8. Wong JJL, Ritchie W, Ebner OA et al (2013) Orchestrated intron retention regulates normal granulocyte differentiation. Cell 154, 583-595 https://doi.org/10.1016/j.cell.2013.06.052
  9. Trcek T, Sato H, Singer RH and Maquat LE (2013) Temporal and spatial characterization of nonsense-mediated mRNA decay. Genes Dev 27, 541-551 https://doi.org/10.1101/gad.209635.112
  10. Cheng J and Maquat LE (1993) Nonsense codons can reduce the abundance of nuclear mRNA without affecting the abundance of pre-mrna or the half-life of cytoplasmic mRNA. Mol Cell Biol 13, 1892-1902
  11. Cuenca-Bono B, Garcia-Molinero V, Pascual-Garcia P et al (2011) SUS1 introns are required for efficient mRNA nuclear export in yeast. Nucleic Acids Res 39, 8599-8611 https://doi.org/10.1093/nar/gkr496
  12. Dumbovic G, Braunschweig U, Langner HK et al (2021) Nuclear compartmentalization of TERT mRNA and TUG1 lncRNA is driven by intron retention (vol 12, 3308, 2021). Nat Commun 12, 3308
  13. Thiele A, Nagamine Y, Hauschildt S and Clevers H (2006) AU-rich elements and alternative splicing in the β-catenin 3'UTR can influence the human β-catenin mRNA stability. Exp Cell Res 312, 2367-2378 https://doi.org/10.1016/j.yexcr.2006.03.029
  14. Song RH, Tikoo S, Jain R et al (2022) Dynamic intron retention modulates gene expression in the monocytic differentiation pathway. Immunology 165, 274-286 https://doi.org/10.1111/imm.13435
  15. Smart AC, Margolis CA, Pimentel H et al (2018) Intron retention is a source of neoepitopes in cancer. Nat Biotechnol 36, 1056-1058 https://doi.org/10.1038/nbt.4239
  16. Wang X, Lu Z, Gomez A et al (2014) N6-methyladenosinedependent regulation of messenger RNA stability. Nature 505, 117-120 https://doi.org/10.1038/nature12730
  17. Li A, Chen YS, Ping XL et al (2017) Cytoplasmic m(6)A reader YTHDF3 promotes mRNA translation. Cell Res 27, 444-447 https://doi.org/10.1038/cr.2017.10
  18. Roundtree IA, Luo G-Z, Zhang Z et al (2017) YTHDC1 mediates nuclear export of N6-methyladenosine methylated mRNAs. Elife 6, e31311
  19. Dominissini D, Nachtergaele S, Moshitch-Moshkovitz S et al (2016) The dynamic N1-methyladenosine methylome in eukaryotic messenger RNA. Nature 530, 441-446 https://doi.org/10.1038/nature16998
  20. Choi J, Ieong KW, Demirci H et al (2016) N6-methyladenosine in mRNA disrupts tRNA selection and translation-elongation dynamics. Nat Struct Mol Biol 23, 110-115 https://doi.org/10.1038/nsmb.3148
  21. Achour C, Bhattarai DP, Groza P, Roman AC and Aguilo F (2023) METTL3 regulates breast cancer-associated alternative splicing switches. Oncogene 42, 911-925 https://doi.org/10.1038/s41388-023-02602-z
  22. Tang W, Zhao Y, Zhang H, Peng Y and Rui Z (2022) METTL3 enhances NSD2 mRNA stability to reduce renal impairment and interstitial fibrosis in mice with diabetic nephropathy. BMC Nephrol 23, 124
  23. Sang L, Wu X, Yan T et al (2022) The m(6)A RNA methyltransferase METTL3/METTL14 promotes leukemogenesis through the mdm2/p53 pathway in acute myeloid leukemia. J Cancer 13, 1019-1030 https://doi.org/10.7150/jca.60381
  24. Chen M, Wei L, Law CT et al (2018) RNA N6-methyladenosine methyltransferase-like 3 promotes liver cancer progression through YTHDF2-dependent posttranscriptional silencing of SOCS2. Hepatology 67, 2254-2270 https://doi.org/10.1002/hep.29683
  25. Wang Q, Chen C, Ding Q et al (2020) METTL3-mediated m(6)A modification of HDGF mRNA promotes gastric cancer progression and has prognostic significance. Gut 69, 1193-1205 https://doi.org/10.1136/gutjnl-2019-319639
  26. Stade K, Ford CS, Guthrie C and Weis K (1997) Exportin 1 (Crm1p) is an essential nuclear export factor. Cell 90, 1041-1050 https://doi.org/10.1016/S0092-8674(00)80370-0
  27. Medghalchi SM, Frischmeyer PA, Mendell JT, Kelly AG, Lawler AM and Dietz HC (2001) Rent1, a trans-effector of nonsense-mediated mRNA decay, is essential for mammalian embryonic viability. Hum Mol Genet 10, 99-105 https://doi.org/10.1093/hmg/10.2.99
  28. Hilleren P, McCarthy T, Rosbash M, Parker R and Jensen TH (2001) Quality control of mRNA 3'-end processing is linked to the nuclear exosome. Nature 413, 538-542 https://doi.org/10.1038/35097110
  29. Mitchell P, Petfalski E, Shevchenko A, Mann M and Tollervey D (1997) The exosome: a conserved eukaryotic rna processing complex containing multiple 3'→5' exoribonucleases. Cell 91, 457-466 https://doi.org/10.1016/S0092-8674(00)80432-8