DOI QR코드

DOI QR Code

Enhancement of the Growth and Quality of Soybeans Using Wasted Coir Substrates on Multi-purpose Utilization Land

범용 농지에서 코이어 폐배지를 이용한 콩의 생육 및 품질 증대

  • Xin Wang (Department of Bio-AI Convergence, Chungnam National University) ;
  • Jiwoo Park (Department of Bio-AI Convergence, Chungnam National University) ;
  • Yong Jae Lee (Department of Bio-AI Convergence, Chungnam National University) ;
  • Gwang Ya Lee (Institute of Agricultural Science, Chungnam National University) ;
  • Jongseok Park (Department of Horticultural Science, Chungnam National University)
  • 왕신 (충남대학교 바이오 AI 융합학과 ) ;
  • 박지우 (충남대학교 바이오 AI 융합학과 ) ;
  • 이용재 (충남대학교 바이오 AI 융합학과 ) ;
  • 이광야 (충남대학교 농업과학연구소) ;
  • 박종석 (충남대학교 농업생명과학대학 원예학과 )
  • Received : 2023.10.26
  • Accepted : 2023.10.30
  • Published : 2023.10.31

Abstract

In recent years, the government has strongly promoted multi-purpose utilization of paddy field. However, poor drainage causes waterlogging stress in upland crops, requiring subsurface drainage technology, resulting in high installation and management costs. To address this issue, a low-cost and high-efficiency technique was developed that utilizes wasted coir substrates which have characteristics of high porosity and good drainage, for upland crop cultivation in paddy fields. Soybeans were grown in both paddy soil and wasted coir slab with two planting densities (80×20 cm and 60×20 cm). The results showed that the coir substrates had better performance than the paddy soil in terms of soil physical and chemical properties and the growth and yield of upland crops are improved. The treatments using wasted coir substrate showed a 41.4% increase in yield and a 21.3% increase in protein content compared to PS treatment. Our findings demonstrate that recycling waste coir substrates to grow upland crops is a positive cultivation strategy to solve some drainage problems in paddy fields. This approach offers a sustainable solution for upland crop production while also addressing the issue of waste management in agriculture.

우리나라 정부는 논·밭 범용화 사업을 적극적으로 추진하고 있다. 그러나 범용 농지의 배수 불량을 해결하기 위한 암거배수 등의 기술이 필요하여 설치 및 관리 비용이 높아진다. 본 연구는 논 배수 불량과 관련된 문제를 해결하기 위한 코이어 폐배지를 활용하여 유망하고 지속 가능한 접근 방식을 제시할 수 있다. 콩을 논 토양 및 코이어 폐배지에서 두 재식 간격(80×20cm 및 60×20cm)으로 재배하였다. 공극률과 우수한 배수성을 특징으로 하는 코이어 배지를 재활용함으로써, 토양의 물리적 특성과 작물 생산성 및 품질을 모두 향상시키는 데 우수한 결과를 도출했다. PS 처리구와 비교하여 CS 처리구에서 수확량이 41.4% 증가하였고, 단백질 함량은 21.3% 증가하였다. 기존의 논의 범용 농지 전환을 위한 높은 초기투자비용 및 유지비용을 줄일 수 있는 해당 기술은 국내외 농가에게 높은 경제성과 환경 친화적인 범용 농지 재배 기술을 제공하고 범용 농지가 가지고 있는 배수 불량 문제를 해결하며 농업 폐기물 관리에 기여함으로써 다양한 사회적 솔루션을 제공할 수 있다. 이는 현대 농업에서 지속 가능한 농업과 진화하는 농업에 의거한 경종적 방법을 제시한다.

Keywords

Acknowledgement

본 결과물은 농림축산식품부의 재원으로 농림식품기술기획평가원의 영농환경 변화에 따른 논·밭 범용활용 기반 조성 및 용수 공급 기술 개발사업의 지원을 받아 연구되었음(322077-3).

References

  1. Andrade C.A., K.R.D. de Souza, M. de Oliveira Santos, D.M. da Silva, and J.D. Alves 2018, Hydrogen peroxide promotes the tolerance of soybeans to waterlogging. Sci Hortic 232:40-45. doi:10.1016/j.scienta.2017.12.048
  2. Bajgain R., Y. Kawasaki, Y. Akamatsu, Y. Tanaka, H. Kawamura, K. Katsura, and T. Shiraiwa 2015, Biomass production and yield of soybean grown under converted paddy fields with excess water during the early growth stage. Field Crop Res 180:221-227. doi:10.1016/j.fcr.2015.06.010
  3. Bullock D., and D. Anderson 1998, Evaluation of the Minolta SPAD-502 chlorophyll meter for nitrogen management in corn. J Plant Nutr 21:741-755. doi:10.1080/01904169809365439
  4. Choi E.-Y., Y.-H. Yoon, K.-Y. Choi, and Y.-B. Lee 2015, Environmentally sustainable production of tomato in a coir substrate hydroponic system using a frequency domain reflectometry sensor. Hortic Environ Biotechnol 56:167-177. doi:10.1007/s13580-015-0036-y
  5. Fehr W., and C. Caviness 1977, Stages of soybean development. Iowa Agriculture and Economics Experiment Station Special Report 80. Iowa State University, Ames, IA, USA.
  6. Gao H., Y. Jia, S. Guo, G. Lv, T. Wang, and L. Juan 2011, Exogenous calcium affects nitrogen metabolism in rootzone hypoxia-stressed muskmelon roots and enhances shortterm hypoxia tolerance. J Plant Physiol 168:1217-1225. doi:10.1016/j.jplph.2011.01.022
  7. Han K., H. Cho, H. Cho, H. Lee, J. Ok, M. Seo, K. Jung, Y. Zhang, and Y. Seo 2017, Effects of alternative crops cultivation on soil physico-chemical characteristics and crop yield in paddy fields. Korean J Environ Agric 36:67-72. (in Korean) doi:10.5338/KJEA.2017.36.2.11
  8. Harper J. 1994, Nitrogen metabolism. In KJ Boote, JM Bennett, TR Sinclair, GM Paulsen, eds, Physiology and Determination of Crop yield. ASA, CSSA, and SSSA Books, Madison, WI, USA, pp 285-302. doi:10.2134/1994.physiologyanddetermination.c19
  9. He L., X. Ding, H. Jin, H. Zhang, J. Cui, J. Chu, R. Li, Q. Zhou, and J. Yu 2022, Comparison of rockwool and coir for greenhouse cucumber production: chemical element, plant growth, and fruit quality. Heliyon 8. doi:10.1016/j.heliyon.2022.e10930
  10. Holtan-Hartwig L., M. Bechmann, T.R. Hoyas, R. Linjordet, and L.R. Bakken 2002, Heavy metals tolerance of soil denitrifying communities: N2O dynamics. Soil Biol Biochem 34:1181-1190. doi:10.1016/S0038-0717(02)00055-X
  11. Hwang J., S. Yun, J. Kwon, M. Park, D. Lee, H. Lee, S. Lee, S. Lee, and Y. Hong 2022, Effects of coir substrate application and substrate volume on the growth and yields of strawberry in a hydroponically cultured system. J Bio-Env Con 31:163-169. (in Korean) doi:10.12791/ksbec.2022.31.3.163
  12. Irfan M., S. Hayat, Q. Hayat, S. Afroz, and A. Ahmad 2010, Physiological and biochemical changes in plants under waterlogging. Protoplasma 241:3-17. doi:10.1007/s00709-009-0098-8
  13. Jeong O.Y., H.S. Park, M.K. Baek, W.J. Kim, G.M. Lee, C.M. Lee, M. Bombay, M.B. Ancheta, and J.H. Lee 2021, Review of rice in Korea: current status, future prospects, and comparisons with rice in other countries. J Crop Sci Biotechnol 24:1-11. doi:10.1007/s12892-020-00053-6
  14. Jung G., T. Matsunami, Y. Oki, and M. Kokubun 2008, Effects of waterlogging on nitrogen fixation and photosynthesis in supernodulating soybean cultivar Kanto 100. Plant Prod Sci 11:291-297. doi:10.1626/pps.11.291
  15. Kaur G., B.A. Zurweller, K.A. Nelson, P.P. Motavalli, and C.J. Dudenhoeffer 2017, Soil waterlogging and nitrogen fertilizer management effects on corn and soybean yields. Agron J 109:97-106. doi:10.2134/agronj2016.07.0411
  16. Kim J. 2023a, Has rice consumption reached a turning point? Available via https://www.krei.re.kr/krei/selectBbsNttView.do?key=109&bbsNo=75&nttNo=161689 Accessed 05 March 2023 (in
  17. Kim D. 2023b, Increasing number of by-products from facility cultivation are 'processed in secret'... Urgent need for system improvement. Available via https://seogh.nonghyup.com/user/indexSub.do?siteId=seogh&framePath=unknowncomBoard&command2=boardView&handle2=2079396&configSeq=2079396&boardSeq2=5417653 Accessed 10 April 2023 (in Korean)
  18. Kim K. 2022, An analysis of the economic effects of the pilot project for multiple-purpose utilization of paddy fields focusing on income and welfare changes. J Korean Soc Rural Plan 28:71-85. (in Korean) doi:10.7851/ksrp.2022.28.2.071
  19. Konnerup D., G. Toro, O. Pedersen, and T.D. Colmer 2018, Waterlogging tolerance, tissue nitrogen and oxygen transport in the forage legume Melilotus siculus: a comparison of nodulated and nitrate-fed plants. Ann Bot 121:699-709. doi:10.1093/aob/mcx202
  20. Lee G., E. Park, Y. Park, K. Yeo, H. Rhee, and J. Kang 2016, Effect of recycled coir organic substrates on vegetable crop growth. J Environ Sci Int 25:1077-1085. (in Korean) doi:10.7584/JKTAPPI.2018.02.50.1.3
  21. Lee K., D. Lee, G. Suh, S. Noh, S. Min, and D. Chung 2018, Changes of the physical structure and chemical properties of cocopeat influenced by the changes of the components of cocopeat. J Korea TAPPI 50:3-10. (in Korean) doi:10.7584/JKTAPPI.2018.02.50.1.3
  22. Lee Y., S.-T. Lee, J. Heo, M.-G. Kim, K.-P. Hong, W.-D. Song, C.-W. Rho, J.-H. Lee, W.-T. Jeon, B.-G. Ko, K.-A. Roh, and S.-K. Ha 2010, Monitoring of chemical properties from paddy soil in gyeongnam province. Korean J Soil Sci Fert 43:140-146. (in Korean)
  23. Lim M.Y., S.H. Choi, H.J. Jeong, and G.L. Choi 2020, Characteristics of domestic net type melon in hydroponic spring cultivars using coir substrates. Hortic Sci Technol 38:78-86. (in Korean) doi:10.7235/HORT.20200008
  24. Liu S., S. Zhou, H. Zheng, X. Zhu, and J. Yang 2009, Restoration dynamics after waterlogging of Carex thunbergii on leaf physiological indexes and above-ground nutritions. Acta Pratac Sin 18:83-88. doi:10.11686/cyxb20090213
  25. Okada H., S. Niwa, S. Takemoto, M. Komatsuzaki, and M. Hiroki 2011, How different or similar are nematode communities between a paddy and an upland rice fields across a flooding- drainage cycle? Soil Biol Biochem 43:2142-2151. doi:10.1016/j.soilbio.2011.06.018
  26. Olorunwa O.J., B. Adhikari, S. Brazel, R. Bheemanahalli, T.C. Barickman, and K.R. Reddy 2023, Waterlogging stress reduces cowpea (Vigna unguiculata L.) genotypes growth, seed yield, and quality at different growth stages: implications for developing tolerant cultivars under field conditions. Agric Water Manag 284:108336. doi:10.1016/j.agwat.2023.108336
  27. Pan J., R. Sharif, X. Xu, and X. Chen 2021, Mechanisms of waterlogging tolerance in plants: research progress and prospects. Front Plant Sci 11:627331. doi:10.3389/fpls.2020.627331
  28. Perata P., and A. Alpi 1993, Plant responses to anaerobiosis. Plant Sci 93:1-17. doi:10.1016/0168-9452(93)90029-Y
  29. Ploschuk R., D. Miralles, and G. Striker 2022, A quantitative review of soybean responses to waterlogging: agronomical, morpho-physiological and anatomical traits of tolerance. Plant Soil 475:237-252. doi:10.1007/s11104-022-05364-x
  30. Puyang X., M. An, L. Xu, L. Han, and X. Zhang 2015, Antioxidant responses to waterlogging stress and subsequent recovery in two Kentucky bluegrass (Poa pratensis L.) cultivars. Acta Physiol Plant 37:1-12. doi:10.1007/s11738-015-1955-z
  31. Ren T., R. Bu, S. Liao, M. Zhang, X. Li, R. Cong, and J. Lu 2019, Differences in soil nitrogen transformation and the related seed yield of winter oilseed rape (Brassica napus L.) under paddy-upland and continuous upland rotations. Soil Tillage Res 192:206-214. doi:10.1016/j.still.2019.05.008
  32. Rhie Y.H., S. Kang, J.M. Choi, and J. Kim 2018, Physical and chemical properties of bottom ash and coir dust mix used as horticultural substrates. Hortic Sci Technol 36:161-171. doi:10.12972/kjhst.20180017
  33. Saito T., S. Ishii, S. Otsuka, M. Nishiyama, and K. Senoo 2008, Identification of novel Betaproteobacteria in a succinate-assimilating population in denitrifying rice paddy soil by using stable isotope probing. Microbes Environ 23:192-200. doi:10.1264/jsme2.23.192
  34. Seneviratne G., L. Holm, and E. Ekanayake 1999, Effect of peat and coir dust-based rhizobial inoculants on the nodulation, plant growth and yield of soybean (Glycine max [L.] Merill) cv PB 1.
  35. Takeshima R., S. Murakami, Y. Fujiwara, K. Nakano, R. Fuchiyama, T. Hara, T. Shima, and T. Koyama 2023, Subsurface drainage and raised-bed planting reduce excess water stress and increase yield in common buckwheat (Fagopyrum esculentum Moench). Field Crop Res 297:108935. doi:10.1016/j.fcr.2023.108935
  36. Trought M., and M. Drew 1980, The development of waterlogging damage in wheat seedlings (Triticum aestivum L.) II. Accumulation and redistribution of nutrients by the shoot. Plant Soil 56:187-199. https://doi.org/10.1007/BF02205847
  37. Uchida Y., Y. Wang, H. Akiyama, Y. Nakajima, and M. Hayatsu 2014, Expression of denitrification genes in response to a waterlogging event in a Fluvisol and its relationship with large nitrous oxide pulses. FEMS Microbiol Ecol 88:407-423. doi:10.1111/1574-6941.12309
  38. Wang M., Q. Shen, G. Xu, and S. Guo 2014, New insight into the strategy for nitrogen metabolism in plant cells. Int Rev Cell Mol Biol 310:1-37. doi:10.1016/B978-0-12-800180-6.00001-3
  39. Wollmer A.C., B. Pitann, and K.H. Muhling 2018, Waterlogging events during stem elongation or flowering affect yield of oilseed rape (Brassica napus L.) but not seed quality. J Agron Crop Sci 204:165-174. doi:10.1111/jac.12244
  40. Yasumoto S., Y. Terakado, M. Matsuzaki, and K. Okada 2011, Effects of high water table and short-term flooding on growth, yield, and seed quality of sunflower. Plant Prod Sci 14:233-248. doi:10.1626/pps.14.233
  41. Yordanova R., and L. Popova 2001, Photosynthetic response of barley plants to soil flooding. Photosynthetica 39:515-520. https://doi.org/10.1023/A:1015643710177
  42. Yordanova R.Y., K.N. Christov, and L.P. Popova 2004, Antioxidative enzymes in barley plants subjected to soil flooding. Environ Exp Bot 51:93-101. doi:10.1016/S0098-8472(03)00063-7
  43. Zhou W., F. Chen, Y. Meng, U. Chandrasekaran, X. Luo, W. Yang, and K. Shu 2020, Plant waterlogging/flooding stress responses: from seed germination to maturation. Plant Physiol Biochem 148:228-236. doi:10.1016/j.plaphy.2020.01.020