Acknowledgement
이 논문은 농촌진흥청 연구사업(과제번호: PJ017065)의 지원에 의하여 연구되었으며, 이에 감사를 표합니다.
References
- American Society of Agricultural and Biological Engineers (ASABE) 2004, ASABE S561.1, Procedure for Measuring Drift Deposits from Ground, Orchard, and Aerial Sprayers. ASABE, St. Joseph, MI, USA.
- American Society of Agricultural and Biological Engineers (ASABE) 2009, ASABE S572.1 Droplet Size Classification. ASABE, St. Joseph, MI, USA.
- Balsari P., P. Marucco, and M. Tamagnone 2007, A test bench for the classification of boom sprayers according to drift risk. Crop Prot 10:1482-1489. doi:10.1016/j.cropro.2006.12.012
- Chen Y., H. Zhu, H.E. Ozkan, R.C. Derksen, and C.R. Krause 2013, Spray drift and off-target loss reductions with a precision air-assisted sprayer. Trans ASABE 56:1273-1281. doi:10.13031/trans.56.1017
- Gil E., M. Gallart, P. Balsari, M. Gallart, J. Llorens, P. Marucco, P.G. Anderson, X. Fabregas, and J. Llop 2014, Determination of drift potential of different flat fan nozzles on a boom sprayer using a test bench. Crop Prot 56:58-68. doi:10.1016/j.cropro.2013.10.018
- Gil E., M. Gallart, P. Balsari, P. Marucco, M.P. Almajano, and J. Llop 2015, Influence of wind velocity and wind direction on measurements of spray drift potential of boom sprayers using drift test bench. Agric For Meteorol 202:94-101. doi:10.1016/j.agrformet.2014.12.002
- Hong S.-W., L. Zhao, and H. Zhu 2018, CFD simulation of pesticide spray from air-assisted sprayers in an apple orchard: tree deposition and off-target losses. Atmos Environ 175:109-19. doi:10.1016/j.atmosenv.2017.12.001
- International Organization for Standard (ISO) 2005, ISO TC 23/SC 06 N 22866. Equipment for crop protection-methods for the field measurement of spray drift. ISO, Geneva, Switzerland.
- Kirchner L.M, R.A.J. Taylor, R.A. Downer, and F.R. Hall 1996, Calibrating the pesticide capture efficiency of passive dosimeters. Pestic Sci 46:61-69. doi:10.1002/(SICI)1096-9063(199601)46:1<61::AID-PS332>3.0.CO;2-1
- KOSIS, 2022. Agricultural land area, https://kosis.kr/statHtml/statHtml.do?orgId=101&tblId=INH_1EB002&conn_path=I2
- Nuyttens D., I.K.A. Zwertvaegher, and D. Dekeyser 2017, Spray drift assessment of different application techniques using a drift test bench and comparison with other assessment methods. Biosyst Engin 154:14-24. doi:10.1016/j.biosystemseng.2016.09.013
- Park J.S., S.-Y. Lee, L.-Y. Choi, and S.-W. Hong 2023, Analysis of effect on pesticide drift prevention using spray drift tunnel. J Bio-Env Con 32:106-114. (in Korean) doi:10.12791/KSBEC.2023.32.2.000
- Park J.S., S.-Y. Lee, L.-Y. Choi, S.-W. Hong, H.H. Noh, and S.-H. Yu 2022, Airborne-spray-drift collection efficiency of nylon screens: measurement and CFD analysis. Agronomy 12:2865. doi:10.3390/agronomy12112865
- Rural Development Administration (RDA) 2020, Manual of unmanned aerial vehicle for spraying pesticide. RDA, Wanju, Korea.
- Schaafsma A.W., L.-R. Victor, and L.G. Forero 2017, The role of field dust in pesticide drift when pesticide-treated maize seeds are planted with vacuum-type planters. Pest Manag Sci 74:323-331. doi:10.1002/ps.4696
- Thomson S.J., and Y. Huang 2023, Comparison of weather acquisition periods influencing a statistical model of aerial pesticide drift. Agronomy 13:213. doi:10.3390/agronomy13010213
- Ucar T., and F.R. Hall 2001, Windbreaks as a pesticide drift mitigation strategy: A review. Pest Manag Sci 57:663-675. doi:10.1002/ps.341