DOI QR코드

DOI QR Code

Hematocrit Determination using a Volumetric Absorptive Microsampling Technique in Patients with Pancreatic Cancer

  • Yeolmae Jung (Department of Pharmacy, College of Pharmacy, Seoul National University) ;
  • Seunghyun Yoo (Department of Pharmacy, College of Pharmacy, Seoul National University) ;
  • Minseo Kang (Department of Pharmacy, College of Pharmacy, Seoul National University) ;
  • Hayun Lim (Department of Pharmacy, College of Pharmacy, Seoul National University) ;
  • Myeong Hwan Lee (Department of Internal Medicine and Liver Research Institute, Seoul National University Hospital, Seoul National University College of Medicine) ;
  • Ji Kon Ryu (Department of Internal Medicine and Liver Research Institute, Seoul National University Hospital, Seoul National University College of Medicine) ;
  • Jangik Lee (Department of Pharmacy, College of Pharmacy, Seoul National University)
  • Received : 2023.08.28
  • Accepted : 2023.09.19
  • Published : 2023.09.30

Abstract

Background: Hematocrit is usually measured from venous blood collected by invasive venipuncture. This study was performed to determine hematocrit accurately and precisely using minimally invasive volumetric absorptive microsampling (VAMS) technique. Such technique is to be applied to determining hematocrit in various clinical settings for the care, including therapeutic drug monitoring, of neonatal or epileptic patients, or patients with high risk of infection or bleeding. Methods: The study was performed using 31 VAMS samples obtained from 21 pancreatic cancer patients. Hematocrit was determined using the values of potassium concentrations obtained from blood in VAMS tips (HctVAMS). HctVAMS was compared with hematocrit measured from blood collected by venipuncture (HctVP). The accuracy and precision of HctVAMS in comparison to HctVP were evaluated using Bland-Altman plot, Deming regression and mountain plot. Results: Bland-Altman plot displayed a random scattering pattern of the differences between HctVAMS and HctVP with the mean bias of -0.010 and the 95% limit of agreement ranging from -0.063 to 0.044. Deming regression for HctVAMS and HctVP line demonstrated very small proportional and constant biases of 1.04 and -0.003, respectively. Mountain plot exhibited a narrow and symmetrical distribution of the differences with their median of -0.011 and central 95% range from -0.049 to 0.033. Conclusion: Hematocrit was accurately and precisely determined using less invasive VAMS technique. Such technique appears to be applicable to determining hematocrit in situations that venipuncture is not favorable or possible.

Keywords

Acknowledgement

This work was supported by the National Research Foundation of Korea (NRF) grant funded by the Korea government (MSIT) (No. 2021R1F1A104996113). This work was also supported by the four phases of the Brain Korea 21 Program in 2023. The authors appreciate the patients who participated in this study. The authors also thank Hyeongseok Lee who conducted the bioanalytical part of this study.

References

  1. Nogawa M, Tanaka S, Yamakoshi K. Development of an optical arterial hematocrit measurement method: pulse hematometry. Conf Proc IEEE Eng Med Biol Soc 2005;2005:2634-6.
  2. Kok MGM, Fillet M. Volumetric absorptive microsampling: current advances and applications. J Pharm Biomed Anal 2018;147:288-96. https://doi.org/10.1016/j.jpba.2017.07.029
  3. Dhondt L, Croubels S, De Cock P, et al. Volumetric absorptive microsampling as alternative sampling technique for renal function assessment in the paediatric population using iohexol. J Chromatogr B Analyt Technol Biomed Life Sci 2021;1171:122623.
  4. Yoo S, Kim G, Kim S, et al. Volumetric absorptive microsampling for the therapeutic drug monitoring of everolimus in patients who have undergone liver transplant. Ther Drug Monit 2023;45(2):223-8. https://doi.org/10.1097/FTD.0000000000001033
  5. Tron C, Ferrand-Sorre MJ, Querzerho-Raguideau J, et al. Volumetric absorptive microsampling for the quantification of tacrolimus in capillary blood by high performance liquid chromatography-tandem mass spectrometry. J Chromatogr B Analyt Technol Biomed Life Sci 2021;1165:122521.
  6. D'Urso A, Rudge J, Patsalos PN, et al. Volumetric absorptive microsampling: a new sampling tool for therapeutic drug monitoring of antiepileptic drugs. Ther Drug Monit 2019;41(5):681-92. https://doi.org/10.1097/FTD.0000000000000652
  7. Moorthy GS, Downes KJ, Vedar C, et al. A whole blood microsampling assay for vancomycin: development, validation and application for pediatric clinical study. Bioanalysis 2020;12(18):1295-310. https://doi.org/10.4155/bio-2020-0112
  8. Koutsimpani-Wagner A, Quartucci C, Rooney JPK, et al. Mercury biomonitoring in German adults using volumetric absorptive microsampling. Environ Monit Assess 2022;194(4):315.
  9. Harahap Y, Diptasaadya R, Purwanto DJ. Volumetric absorptive microsampling as a sampling alternative in clinical trials and therapeutic drug monitoring during the COVID-19 pandemic: a review. Drug Des Devel Ther 2020;14:5757-71. https://doi.org/10.2147/DDDT.S278892
  10. Moorthy GS, Vedar C, Downes KJ, et al. Microsampling Assays for Pharmacokinetic Analysis and Therapeutic Drug Monitoring of Antimicrobial Drugs in Children: A Critical Review. Ther Drug Monit 2021;43(3):335-45. https://doi.org/10.1097/FTD.0000000000000845
  11. Capiau S, Stove C. Hematocrit prediction in volumetric absorptive microsamples. J Pharm Biomed Anal 2020;190:113491.
  12. Wilhelm AJ, den Burger JC, Swart EL. Therapeutic drug monitoring by dried blood spot: progress to date and future directions. Clin Pharmacokinet 2014;53(11):961-73. https://doi.org/10.1007/s40262-014-0177-7
  13. Dash RP, Veeravalli V, Thomas JA, et al. Whole blood or plasma: what is the ideal matrix for pharmacokinetic-driven drug candidate selection? Future Med Chem 2021;13(2):157-71. https://doi.org/10.4155/fmc-2020-0187
  14. Rowland M, Emmons GT. Use of dried blood spots in drug development: pharmacokinetic considerations. AAPS J 2021;12(3):290-3. https://doi.org/10.1208/s12248-010-9188-y
  15. Lee J, Jung SY, Choi MY, et al. Development of a dried blood spot sampling method towards therapeutic monitoring of radotinib in the treatment of chronic myeloid leukaemia. J Clin Pharm Ther 2020;45(5):1006-13. https://doi.org/10.1111/jcpt.13124
  16. Capiau S, Stove VV, Lambert WE, et al. Prediction of the hematocrit of dried blood spots via potassium measurement on a routine clinical chemistry analyzer. Anal Chem 2013;85(1):404-10. https://doi.org/10.1021/ac303014b
  17. Zacchia M, Abategiovanni ML, Stratigis S, et al. Potassium: from physiology to clinical implications. Kidney Dis (Basel) 2016;2(2):72-9. https://doi.org/10.1159/000446268
  18. Murthy BV, Waiker HD, Neelakanthan K, et al. Hyperkalaemia following blood transfusion. Postgrad Med J 1999;75(886):501-3. https://doi.org/10.1136/pgmj.75.886.501
  19. Nakhoul GN, Huang H, Arrigain S, et al. Serum potassium, endstage renal disease and mortality in chronic kidney disease. Am J Nephrol 2015;41(6):456-63. https://doi.org/10.1159/000437151
  20. Asharani PV, Sethu S, Vadukumpully S, et al. (2010) Investigations on the structural damage in human erythrocytes exposed to silver, gold, and platinum nanoparticles. Adv Funct Mater 2010;20(8):1233-42. https://doi.org/10.1002/adfm.200901846
  21. Capiau S, Veenhof H, Koster RA, et al. Official international association for therapeutic drug monitoring and clinical toxicology guideline: development and validation of dried blood spot-based methods for therapeutic drug monitoring. Ther Drug Monit 2019;41:409-30. https://doi.org/10.1097/FTD.0000000000000643
  22. CLSI. Measurement procedure comparison and bias estimation using patient samples; approved gudeline, 3rd edn. CLSI document EP09-A3. Wayne, PA: Clinical and Laboratory Standards Institute. 2013.
  23. Bland JM, Altman DG. Statistical methods for assessing agreement between two methods of clinical measurement. Lancet 1986;1(8476):307-10.
  24. Lee J, Choi G, Yang S, et al. Development of a limited sampling strategy for the estimation of isoniazid exposure considering Nacetyltransferase 2 genotypes in Korean patients with tuberculosis. Tuberculosis (Edinb) 2021;127:102052.
  25. Krouwer JS, Monti KL. A simple, graphical method to evaluate laboratory assays. Eur J Clin Chem Clin Biochem 1995;33(8):525-7.
  26. Moorthy GS, Vedar C, Zane NR, et al. Development and validation of a volumetric absorptive microsampling- liquid chromatography mass spectrometry method for the analysis of cefepime in human whole blood: application to pediatric pharmacokinetic study. J Pharm Biomed Anal 2020;179:113002.
  27. Verougstraete N, Stove CP. Volumetric absorptive microsampling as a suitable tool to monitor tyrosine kinase inhibitors. J Pharm Biomed Anal 2022;207:114418.
  28. Verstraete J, Stove C. Volumetric absorptive microsampling (VAMS) as a reliable tool to assess thiamine status in dried blood microsamples: a comparative study. Am J Clin Nutr 2021;114(3):1200-7. https://doi.org/10.1093/ajcn/nqab146
  29. Capiau S, Bolea-Fernandez E, Balcaen L, et al. Development, validation and application of an inductively coupled plasma - mass spectrometry method to determine cobalt in metal-on-metal prosthesis patients using volumetric absorptive microsampling. Talanta 2020;208:120055.
  30. Volani C, Malfertheiner C, Caprioli G, et al. VAMS-based blood capillary sampling for mass spectrometry-based human metabolomics studies. Metabolites 2023;13(2):146.
  31. Grassin-Delyle S, Lamy E, Semeraro M, et al. Clinical validation of a volumetric absorptive micro-sampling device for pharmacokinetic studies with tranexamic acid. Front Pharmacol 2021;12:764379.
  32. Billett HH. Hemoglobin and hematocrit. In: Walker HK, Hall WD, Hurst JW, (editors). Clinical methods: the history, physical, and laboratory examinations, 3rd edn. Butterworths, Boston; 1990. Chapter 151.
  33. Dicato M, Plawny L, Diederich M. Anemia in cancer. Ann Oncol 21 Suppl. 2010;7:vii167-72. https://doi.org/10.1093/annonc/mdq284
  34. Knight K, Wade S, Balducci L. Prevalence and outcomes of anemia in cancer: a systematic review of the literature. Am J Med 2004;116 Suppl 7A:11S-26S. https://doi.org/10.1016/j.amjmed.2003.12.008