DOI QR코드

DOI QR Code

Lateral stiffness of corner-supported steel modular frame with splice connection

  • Yi-Fan Lyu (Department of Civil and Environmental Engineering, National University of Singapore) ;
  • Guo-Qiang Li (College of Civil Engineering, Tongji University) ;
  • Ke Cao (School of management science and real estate, Chongqing University) ;
  • Si-Yuan Zhai (College of Civil Engineering, Chongqing University) ;
  • De-Yang Kong (Department of Civil and Environmental Engineering, National University of Singapore) ;
  • Xuan-Yi Xue (College of Civil Engineering, Chongqing University) ;
  • Heng Li (Department of Building and Real Estate, The Hong Kong Polytechnic University)
  • Received : 2022.12.04
  • Accepted : 2023.07.27
  • Published : 2023.08.10

Abstract

This paper proposes a comprehensive investigation on lateral stiffness of corner-supported steel modular frame using splice connection. A full-scale modular frame with two stacked steel modules under lateral load is tested. Ductile pattern in the transfer of lateral load is found in the final failure mode. Two types of lateral stiffness, including tangent stiffness and secant stiffness, are defined from the load-displacement due to the observed nonlinearity. The difference between these two types of stiffness is found around 20%. The comparisons between the experimental lateral stiffness and the predictions of classical methods are also conducted. The D-value method using hypothesis of independent case is a conservative option for predicting lateral stiffness, which is more recommended than method of contraflexural bending moment. Analyses on two classical short-rod models, including fix-rod model and pin-rod model, are further conducted. Results indicate that fix-rod model is more recommended than pin-rod model to simplify splice connection for simulation on lateral stiffness of modular frame in elastic design stage.

Keywords

Acknowledgement

This research is supported by the Fundamental Research Funds for the Central Universities with project number 2022CDJSKJC17 and 2020CDJSK03PT08, the National Science Foundation for Young Scientists of China with project number 51808068 and the National Key Research and Development Program of China with project number 2017YFC0703803.

References

  1. ABAQUS Inc. (2014), ABAQUS Analysis User's Manual, http://130.149.89.49:2080/v6.14/
  2. Alembagheri, M., Sharafi, P., Hajirezaei, R. and Samali, B. (2020), "Collapse capacity of modular steel buildings subject to module loss scenarios: The role of inter-module connections", Eng. Struct, 210, 110373. https://doi.org/10.1016/j.engstruct.2020.110373.
  3. Chen, Z., Liu, J., Yu, Y., Zhou, C. and Yan, R. (2017), "Experimental study of an innovative modular steel building connection", J. Constr. Steel. Res, 139, 69-82. https://doi.org/10.1016/j.jcsr.2017.09.008.
  4. Chen, Z., Liu, J. and Yu, Y., (2017), "Experimental study on interior connections in modular steel buildings", Eng. Struct., 147, 625-638. https://doi.org/10.1016/j.engstruct.2017.06.002.
  5. Chua, Y.S., Pang, S.D., Liew, J.Y. and Dai, Z.Q. (2022), "Robustness of inter-module connections and steel modular buildings under column loss scenarios", J. Build. Eng, 47, 103888. https://doi.org/10.1016/j.jobe.2021.103888.
  6. Corfar, D.A. and Tsavdaridis, K.D. (2022), "A comprehensive review and classification of inter-module connections for hot-rolled steel modular building systems", J. Build. Eng., 50, 104006. https://doi.org/10.1016/j.jobe.2022.104006.
  7. Deng, E.F., Zong, L., Ding, Y., Dai, X.M., Lou, N. and Chen, Y. (2018), "Monotonic and cyclic response of bolted connections with welded cover plate for modular steel construction", Eng. Struct., 167, 407-419. https://doi.org/10.1016/j.engstruct.2018.04.028.
  8. Ferdous, W., Bai, Y., Ngo, T. D., Manalo, A. and Mendis, P., (2019), "New advancements, challenges and opportunities of multi-storey modular buildings - A state-of-the-art review", Eng. Struct., 183, 883-893. https://doi.org/10.1016/j.engstruct.2019.01.061.
  9. Gibb, A.G.F. (1999), Off-site fabrication: Prefabrication, preassembly and modularisation, Whittles Publishing, Scotland, UK.
  10. GB/T 16471 (1996), Dimensional Constraints for Transport Package, Ministry of Transport of the People's Republic of China; Beijing, China.
  11. GB/T 228 (2002), Metallic Materials: Tensile Testing at Ambient Temperature, China Standard Press; Beijing China.
  12. Hou, H.T., Cheng, J.R., Qu, Z., Fu, W.Q., Qu, B. and Cui, S.Q. (2017), "Experimental study on the seismic behavior of concrete filled tube-confined sandwich shear walls", J. Huan. Univ, 44(5), 27-36
  13. Kiyoshi, M., (1965), Seismic Analysis of Reinforced Concrete buildings, Shokoku-sha.
  14. Lacey, A.W., Chen, W., Hao, H. and Bi, K. (2018), "Structural response of modular buildings - an overview", J. Build. Eng., 16, 45-56. https://doi.org/10.1016/j.jobe.2017.12.008
  15. Lacey, A.W., Chen, W., Hao, H. and Bi, K. (2019), "New interlocking inter-module connection for modular steel buildings: Experimental and numerical studies", Eng. Struct., 198, 109465. https://doi.org/10.1016/j.engstruct.2019.109465.
  16. Lacey, A.W., Chen, W., Hao, H. and Bi, K. (2021), "Lateral behaviour of modular steel building with simplified models of new inter-module connections", Eng. Struct., 236, 112103. https://doi.org/10.1016/j.engstruct.2021.112103.
  17. Lawson, R.M. and Ogden, R.G. (2008), "Hybrid' light steel panel and modular systems", Thin-Wall. Struct., 46(7-9), 720-730. https://doi.org/10.1016/j.tws.2008.01.042.
  18. Liew, J.Y., Chua, Y. and Dai, Z.Q. (2019), "Steel concrete composite systems for modular construction of high-rise buildings", Structures, 135-149. https://doi.org/10.1016/j.istruc.2019.02.010.
  19. Liu, J., Chen, Z., Liu, Y., Bai, Y. and Zhong, X., (2021), "Full-scale corner-supported modular steel structures with vertical inter-module connections under cyclic loading", J. Build. Eng., 44, 103269. https://doi.org/10.1016/j.jobe.2021.103269.
  20. Lyu, Y.F., Li, G.Q., Cao, K., Zhai, S.Y., Wang, Y.B., Mao, L. and Ran, M.M. (2022), "Bending behavior of splice connection for corner-supported steel modular buildings", Eng. Struct., 250, 113460. https://doi.org/10.1016/j.engstruct.2021.113460.
  21. Pan, W., Wang, Z. and Zhang, Y., (2022), "Novel discrete diaphragm system of concrete high-rise modular buildings", J. Build. Eng., 51, 104342. https://doi.org/10.1016/j.jobe.2022.104342.
  22. Peng, J., Hou, C. and Shen, L. (2022), "Progressive collapse analysis of corner-supported composite modular buildings", J. Build. Eng., 48, 103977. https://doi.org/10.1016/j.jobe.2021.103977.
  23. Sanches, R., Mercan, O. and Roberts, B., (2018), "Experimental investigations of vertical posttensioned connection for modular steel structures", Eng. Struct., 175, 776-789. https://doi.org/10.1016/j.engstruct.2018.08.049.
  24. Wasim, M. and Hussain, R.R. (2013), "Three-dimensional computer-aided finite element method retrofitting modeling and non-destructive testing techniques for the assessment of actual existing high-rise fire-damaged reinforced concrete building", Struct. Des. Tall. Spec. Build, 22(12), 927-940. https://doi.org/10.1002/tal.734.
  25. Yu, Y.J., Chen Z.H. and Chen, A.Y. (2019), "Experimental study of a pretensioned connection for modular buildings", Steel Compos. Struct., 31(3), 217-232. https://doi.org/10.12989/scs.2019.31.3.217.