DOI QR코드

DOI QR Code

교사와 학생의 사회적-과학적 쟁점(Socio-Scientific Issues) 주제 선호도 분석

A Comparative Study of Teachers' and Students' Preference of Socio-Scientific Issues Topics

  • 투고 : 2023.06.26
  • 심사 : 2023.08.23
  • 발행 : 2023.08.31

초록

이 연구에서는 초등, 중, 고등학교의 학생과 교사가 선호하는 SSI 주제를 조사하여 학교급별 학생과 교사가 선호하는 SSI 주제의 유사성을 코사인 유사도 측정을 통해 분석하였다. 연구 대상은 초, 중, 고등학생 566명, 교사의 327명이었다. SSI 관련 선행연구 논문과 프로그램에 포함된 SSI 주제 60개를 환경, 과학기술, 보건·의학, 기타 사회 문제 영역로 구분하고 목록화하여, 연구 대상인 학생 또는 교사가 선호하는 주제 5개를 선택하도록 하였다. 자료수집은 서베이몽키를 이용한 온라인으로 진행하였고, 수집된 자료는 학생 및 교사별로 6개 집단으로 구분하고, 집단별로 주제의 선택 빈도를 조사하였다. 그리고 선택된 주제의 빈도를 기준으로 벡터 값을 계산하고, 학교급별 학생 간, 교사 간, 교사와 학생 간의 코사인 유사도를 측정하여 주제 선호 유사도를 분석하였다. 연구결과는 다음과 같다. 첫째, 학생의 학교급별 집단간 SSI 선호 주제 유사도는 중학생과 고등학생 사이의 코사인 유사도(0.982)가 초등학생과 중학생간(0.651) 또는 초등학생과 고등학생간(0.662)의 코사인유사도보다 높았다. 둘째, 교사의 학교급별 집단간 SSI 선호 주제 유사도는 초등, 중, 고등학교간의 모든 비교 집단에서 비교적 비슷한 코사인 유사도의 양상을 보였다. 셋째, 학생과 교사간 학교급별 SSI 선호 주제 유사도는 초등학교 학생과 교사 집단간 코사인 유사도(0.974)가 다른 학교급의 비교 집단, 중학교급(0.621) 또는 고등학교급(0.645)보다 높았다. 즉 초등학교의 학생과 교사는 서로 선호하는 SSI 주제가 73.33%의 수준에서 유사하고, 반면, 중학교 또는 고등학교의 학생과 교사는 서로 선호하는 주제가 33% 수준으로 유사한 경향을 보였다. SSI 교육에서 학생에게 관심 있는 주제로 접근하는 것은 학습 동기 유발과 지속, 그리고 즐거운 학습 경험과 학습에 대한 긍정적인 태도 형성과 긴밀하게 연관된다. 따라서, SSI 수업을 설계할 때, 학생 관심의 관점에서 주제를 검토해야 할 것이다. 특히 교사가 학생의 선호도와 다소 차이가 있는 SSI 주제를 선별한 경우, 그 차이를 극복할 수 있는 치밀한 교수 설계가 필요할 것이다.

The purpose of this study was to investigate the preferred SSI topics of students and teachers in elementary, middle, and high schools. It analyzed the similarity of students' and teachers' preferred SSI topics by school level using the cosine similarity measure. A total of 566 students and 327 teachers from elementary, middle, and high schools participated in the study. Sixty topics were identified and listed in the areas of environment, science and technology, health and medicine, and other social issues based on the literature and SSI programs. Students and teachers were asked to select five of their favorite topics. The data was collected online using SurveyMonkey. The collected data was divided into six groups of students and teachers, and the frequency of topic selection was analyzed within each group. The topic preference similarity was analyzed by calculating vector values based on the frequency of the selected topics and measuring the cosine similarity between students, teachers, and teachers and students by school level. The results are as follows: First, the cosine similarity of SSI Preferred Topics between students' school-level cohorts was higher between middle and high school students (0.982) than between elementary and middle school students (0.651) or between elementary and high school students (0.662). Second, the cosine similarity of SSI Preferred Topics between teachers' school-level cohorts was similar for all comparison groups between elementary, middle, and high school. Third, the SSI topic preference similarity between students and teachers by school level had a higher cosine similarity between the elementary student and teacher cohorts (0.974) than the other school level comparisons, middle school (0.621) or high school (0.645). Access to topics of interest to students in SSI education is strongly associated with motivation and persistence in learning, as well as an enjoyable learning experience and positive attitudes toward learning. Therefore, when designing SSI lessons, it is important to examine topics from the perspective of student interest, especially if the teacher has selected SSI topics that are different from students' preferences. Careful instructional design will be needed to overcome the gap.

키워드

과제정보

이 논문은 2017년도 정부(과학기술정보통신부)의 재원으로 한국연구재단의 지원을 받아 수행된 연구임(NRF-2017R1A2B1009009).

참고문헌

  1. Aikenhead, G. S. (2006). Science education for everyday life: Evidence-based practice. Teachers College Press.
  2. Albe, V. (2008a). Students' positions and considerations of scientific evidence about a controversial socioscientific issue. Science & Education, 17(8-9), 805-827.
  3. Albe, V. (2008b). When scientific knowledge, daily life experience, epistemological and social considerations intersect: Students' argumentation in group discussions on a socio-scientific issue. Research in Science Education, 38(1), 67-90. https://doi.org/10.1007/s11165-007-9040-2
  4. American Association for the Advancement of Science [AAAS]. (1989). Science for all Americans. New York: Oxford University Press.
  5. Ausubel, D. (1978). In defense of advance organizers: A reply to the critics. Review of Educational Research, 48, 251-257. https://doi.org/10.3102/00346543048002251
  6. Chang Rundgren, S. N., & Rundgren, C. J. (2010). SEE-SEP: From a separate to a holistic view on socio-scientific issues. Asia-Pacific Forum on Science Learning and Teaching, 11(1), 1-24.
  7. Cho, H. (2014). A literature review of studies on socio-scientific issues with a focus on decision making. Journal of Research in Curriculum Instruction, 18(1), 191-213. https://doi.org/10.24231/rici.2014.18.1.191
  8. Choi, Y., Kim, I., & Im, S. (2015). The relationships between moral sensitivity and preference for science, belief about learning science of middle school students. Journal of the Korean Association for Science Education, 35(1), 65-72.
  9. Chung, Y., Mun, K., & Kim, S. (2010). Exploration of socioscientific issues (SSI) in the science textbook. Korean Association for Learning Certificated Curriculum and Instruction, 10(3), 435-456.
  10. Fowler, S., Zeidler, D. L., & Sadler, T. D. (2009). Moral sensitivity in the context of socio-scientific issues in high school science students. International Journal of Science Education, 31, 279-296.
  11. Hidi, S., & K. Renninger, K. A. (2006). The four-phase model of interest development. Educational Psychologist, 41(2), 111-127.
  12. Hwang, C., Yoon, C., & Yeol, Y. (2021). Sentence similarity analysis using ontology based on cosine similarity. Korea Institute of information and Communication Engineering Conference Proceeding, 25(1), 441-443.
  13. Jakobson, R. (1990). Language in literature. Translated by Shin (1997). Seoul: Moonji.com
  14. Jang, H., & Chung, Y. (2009). An analysis of informal reasoning in the context of socioscientific decision-making. Journal of the Korean Association for Science Education, 29(2), 253-266.
  15. Jang, J., Mun, J., Ryu, H., choi, K., Krajcik, J., & Kim, S. (2012). Korean middle school students' perceptions as global citizens of socioscientific issues. Journal of the Korean Association for Science Education, 32(7), 1124-1138.
  16. Karahan, E., & Roehrig, G. (2017). Secondary School Students' Understanding of Science and Their Socioscientific Reasoning. Research in Science Education, 47(4), 755-782.
  17. Kim, L., Ha, E., & Song, J. (2010). The development of science culture indicators for socio-scientific issues: Focusing on climate change. Journal of Korea Association Science Education, 30(4), 472-486.
  18. Kim, S., Yoon, M., & So, Y. (2008). Academic interests of Korean students: Description, diagnosis, & prescription. Korean Journal of Psychological and Social Issues, 14(1), 187-221.
  19. Kolsto, S. D. (2001). Scientific literacy for citizenship: Tools for eealing with the science dimension of controversial socioscientific issues. Science Education, 85(3), 291-310. https://doi.org/10.1002/sce.1011
  20. Kolsto, S. D., Bungum, B., Arnesen, E., Isnes, A., Kristensen, T., Mathiassen, K., Mestad, I., Quale, A., Tonning, A. S. V., & Ulvik, M. (2006). Science students' critical examination of scientific information related to socioscientific issues. Science Education, 90(4), 632-655.
  21. Kwon, S. K., & Yoon, S. (2021). A study on the educational performance analysis of classical education based on academic interest level. Korean Journal of General Education, 15(3), 83-95.
  22. Lee, H. (2008). Decision-making patterns of pre-service science teachers on socioscientific issues. Journal of Research in Curriculum Instruction, 12(2), 377-395. https://doi.org/10.24231/rici.2008.12.2.377
  23. National Research Council [NRC]. (2011). A framework for K-12 science education: practices, crosscutting concepts, and core ideas. Washington: National Academy Press.
  24. National Research Council [NRC]. (2012). A framework for K-12 science education: Practices, crosscutting concepts, and core ideas. Committee on a Conceptual Framework for New K-12 Science Education Standards. Board on Science Education, Division of Behavioral and Social Sciences and Education. Washington, DC: The National Academies Press.
  25. Next Generation Science Standards [NGSS]. (2022). Retrieved from https://www.nextgenscience.org/
  26. Park, S. & Kim, C. (2022). SSI Education and Scientific Literacy from a Lifelong Learning Perspective. Journal of the Korean Association for Science Education, 42(1), 61-75.
  27. Renninger, K. A., Hidi, S., & Krapp, A. (1992). The role of interest in learning and development, Hillsdale, NJ: Lawrence Erlbaum Associates.
  28. Roberts, D. A. & Bybee, R. (2014). Scientific literacy, science literacy, and science education. DOI:10.4324/9780203097267.CH27 Corpus ID: 156001980
  29. Sadler, T. D. (2004). Informal reasoning regarding socioscientific issues: A critical review of research. Journal of Research in Science Teaching, 41(5), 513-536. https://doi.org/10.1002/tea.20009
  30. Sadler, T. D. (2009). Socioscientific issues in science education: Labels, reasoning, and transfer. Cultural Studies of Science Education, 4(3), 697-703. https://doi.org/10.1007/s11422-008-9133-x
  31. Sadler, T. D. (2011). Socio-scientific issues-based education: What we know about science education in the context of SSI. In T. D. Sadler (Ed.), Socio-scientific Issues in the Classroom: Springer.
  32. Sadler, T. D., & Zeidler, D. L. (2004). The morality of socioscientific issues: Construal and resolution of genetic engineering dilemmas. Science Education, 88, 4-27.
  33. Sadler, T. D., & Zeidler, D. L. (2005). Patterns of informal reasoning in the context of socioscientific decision making. Journal of Research in Science Teaching, 42(1), 112-138.
  34. Sadler, T. D., & Zeidler, D. L. (2009). Scientific literacy, PISA, and socioscientific discourse: Assessment for progressive aims of science education. Journal of Research in Science Teaching, 46(8), 909-921.
  35. Sadler, T. D., Amirshokoohi, A., Kazempour, M., & Allspaw, K. M. (2006). Socioscience and ethics in science classrooms: Teacher perspectives and strategies. The Official Journal of the National Association for Research in Science Teaching, 43(4), 353-376.
  36. Sadler, T. D., Barab, S. A., & Scott, B. (2007). What do students gain by engaging in socioscientific inquiry? Research in Science Education, 37, 371-391.
  37. Schiefele, U. (1991). Interest, learning, and motivation. Educational Psychologist, 36(3 & 4), 299-323.
  38. Song, J., Kang, S., Kwak, Y., Kim, D., Kim, S., Na, J., Do, J., Min, B., Park, S., Bae, S., Son, Y., Son, J., Oh. P., Lee, J., Lee, H., Ihm, H., Jeong, D., Jung, J., Kim, J., & Joung, J. (2019). Contents and features of 'Korean Science Education Standards (KSES)' for the next generation. Journal of the Korean Association for Science Education, 39(3), 465-478.
  39. Yang, J., Kim, H., Gao, L., Kim, E., Kim, S., & Lee, H. (2012). Perceptions of science teachers on socioscientific issues as an instructional tool for creativity and character education. Journal of the Korean Association for Science Education, 32(1), 113-128.
  40. Yoo, J., Choi, S., & Lee, H. (2011). Perceptions of science, social studies, and ethics feachers on feaching socio-scientific issues. Journal of Research in Curriculum Instruction, 15(2), 415-432.
  41. Yoon, M., & Kim, S. (2003). A study on constructs of subject-specific interests and its relationship with academic achievement. Korean Journal of Educational Psychology, 17(3), 271-290.
  42. Zeidler, D. L., Lederman, N. G., & Taylor, S. C. (1992). Fallacies and student discourse: Conceptualizing the role of critical thinking in science education. Science Education, 76(4), 437-450.
  43. Zeidler, D., L., Sadler, T. D., Simmons, M. L., & Howes, E. V. (2005). Beyond STS: A research-based fram ework for socioscientific issues education. https://doi.org/10.1002/sce.20048