DOI QR코드

DOI QR Code

Estimation of yield strength due to neutron irradiation in a pressure vessel of WWER-1000 reactor based on the correction of the secondary displacement model

  • Elaheh Moslemi-Mehni (Faculty of Science, Arak University) ;
  • Farrokh Khoshahval (Reactor and Nuclear Safety Research School, Nuclear Science and Technology Research Institute (NSTRI)) ;
  • Reza Pour-Imani (Faculty of Science, Arak University) ;
  • M.A. Amirkhani-Dehkordi (Reactor and Nuclear Safety Research School, Nuclear Science and Technology Research Institute (NSTRI))
  • 투고 : 2022.10.19
  • 심사 : 2023.04.29
  • 발행 : 2023.09.25

초록

Due to neutron radiation, atomic displacement has a significant effect on material in nuclear reactors. A range of secondary displacement models, including the Kinchin-Pease (K-P), Lindhard, Norgett-Robinson-Torrens (NRT), and athermal recombination-corrected displacement per atom (arc-dpa) have been suggested to calculate the number of displacement per atom (dpa). As neutron elastic interaction is the main cause of displacement damage, the focus of the current study is to calculate the atomic displacement caused by the neutron elastic interaction in order to estimate the exact amount of yield strength in a WWER-1000 reactor pressure vessel. To achieve this purpose, the reactor core is simulated by MCNPX code. In addition, a program is developed to calculate the elastic radiation damage induced by the incident neutron flux (RADIX) based on different models using Fortran programming language. Also, due to non-elastic interaction, the displacement damage is calculated by the HEATR module of the NJOY code. ASME E-693-01 standard, SPECTER, NJOY codes, and other pervious findings have been used to validate RADIX results. The results showed that the RADIX(arc-dpa)/HEATR outputs have appropriate accuracy. The relative error of the calculated dpa resulting from RADIX(arc-dpa)/HEATR is about 8% and 46% less than NJOY code, respectively in the ¼ and ¾ vessel wall.

키워드

참고문헌

  1. Takeo Muroga, et al., Characterization and qualification of neutron radiation effects-Summary of Japan-USA Joint Projects for 40 years, J. Nucl. Mater. 560 (2022), 153494.
  2. Shengli Chen, David Bernard, Recommendation for computing neutron irradiation damage from evaluated nuclear data, J. Nucl. Mater. 562 (2022), 153610.
  3. Hao Sun, , BELAND, Laurent Karim, Statistical distribution of spontaneous recombination radii of Frenkel pairs in FCC and BCC metals, Acta Mater. 229 (2022), 117814.
  4. F.A. Garner, Radiation Damage in Austenitic Steels, 2012.
  5. Uttiyoarnab Saha, K. Devan, S. Ganesan, A study to compute integrated dpa for neutron and ion irradiation environments using SRIM-2013, J. Nucl. Mater. 503 (2018) 30-41. https://doi.org/10.1016/j.jnucmat.2018.02.039
  6. Uttiyoarnab Saha, et al., Neutron radiation damage studies in the structural materials of a 500 MWe fast breeder reactor using DPA cross-sections from ENDF/B-VII. 1, Pramana 90.4 (2018) 1-15. https://doi.org/10.1007/s12043-017-1492-y
  7. Shengli Chen, et al., Improved model for atomic displacement calculation, in: EPJ Web of Conferences, vol. 239, EDP Sciences, 2020.
  8. Kai Nordlund, et al., Improving atomic displacement and replacement calculations with physically realistic damage models, Nat. Commun. 9 (1) (2018) 1-8. https://doi.org/10.1038/s41467-017-02088-w
  9. Lawrence R. Greenwood, Robert K. Smither, SPECTER: Neutron Damage Calculations for Materials Irradiations, Argonne National Lab., IL (USA), 1985.
  10. L.R. Greenwood, Compound Displacement Damage Calculations with SPECOMP, Informal Notes, Argonne National Laboratory, 1988 (February 1988).
  11. Robert Macfarlane, et al., The NJOY Nuclear Data Processing System, Version 2016, (No. LA-UR-17-20093, Los Alamos National Lab.(LANL), Los Alamos, NM (United States), 2017.
  12. B.Z. Margolin, et al., Analysis of a link of embrittlement mechanisms and neutron flux effect as applied to reactor pressure vessel materials of WWER, J. Nucl. Mater. 434 (1-3) (2013) 347-356. https://doi.org/10.1016/j.jnucmat.2012.11.014
  13. Seyed Ardekani, Fazel Ghazi, Kamal Hadad, Monte Carlo evaluation of neutron irradiation damage to the VVER-1000 RPV, Nucl. Energy.Technol. 3 (2) (2017) 73-80. https://doi.org/10.1016/j.nucet.2017.04.001
  14. M.A. Amirkhani, M. Asadi Asadabad, M. Hassanzadeh, S.M. Mirvakili, A. Mohammadi, Calculation of dpa rate in graphite box of Tehran Research Reactor (TRR), Nucl. Sci. Tech. 30 (6) (2019 Jun) 1-3. https://doi.org/10.1007/s41365-018-0540-8
  15. M.A. Amirkhani, F. Khoshahval, Evaluation of the radiation damage effect on mechanical properties in Tehran research reactor (TRR) clad, Nucl. Eng. Technol. 52 (12) (2020 Dec 1) 2975-2981. https://doi.org/10.1016/j.net.2020.05.028
  16. E. Torabi, M. Hasanzadeh, M.A. Amirkhani, The effect of neutron radiation on the yield stress of the Bushehr reactor clad, Appl. Phys. A 126 (7) (2020 Jul) 1-2. https://doi.org/10.1007/s00339-019-3176-6
  17. ASTM. Standard Practice for Characterizing Neutron Exposures in Iron and Low Alloy Steels in Terms of Displacements Per Atom (DPA), E 706 (ID).
  18. M. Herman, ENDF-6 Formats Manual Data Formats and Procedures for the Evaluated Nuclear Data File ENDF/B-VI and ENDF/B-VII. Brookhaven National Lab.(BNL), Upton, NY (United States), National Nuclear Data Center (NNDC), 2009.
  19. Ahmad Pirouzmand, Morteza Kazem Dehdashti, Estimation of relative power distribution and power peaking factor in a VVER-1000 reactor core using artificial neural networks, Prog. Nucl. Energy 85 (2015) 17-27. https://doi.org/10.1016/j.pnucene.2015.06.001
  20. M. Sangiorgi, A. Ezzidi, In-vessel melt retention (ivmr) analysis of a vver-1000 npp, in: In 6th ASTEC User's Club/2nd CESAM Workshop, 2015.
  21. Y. Bilodid, E. Fridman, T. Lotsch, X2 VVER-1000 benchmark revision: fresh HZP core state and the reference Monte Carlo solution, Ann. Nucl. Energy 144 (2020), 107558.
  22. Uttiyoarnab Saha, K. Devan, The effect of anisotropy of elastic scattering of neutrons in the DPA cross sections of light and medium mass nuclei, in: Proceedings of the DAE-BRNS symposium on nuclear physics 61, 2016.
  23. Was, S. Gary, The displacement of atoms, in: Fundamentals of Radiation Materials Science, Springer, New York, NY, 2017, pp. 77-130.
  24. D.G. Doran, Neutron displacement cross sections for stainless steel and tantalum based on a Lindhard model, Nucl. Sci. Eng. 49 (2) (1972) 130-144. https://doi.org/10.13182/NSE72-A35501
  25. M.J. Norgett, M.T. Robinson, I. Mcalder Torrens, A proposed method of calculating displacement dose rates, Nucl. Eng. Des. 33 (1) (1975) 50-54. https://doi.org/10.1016/0029-5493(75)90035-7
  26. Uttiyoarnab Saha, K. Devan, S. Ganesan, Application of arc-dpa model to estimate the primary radiation damage of structural materials by neutrons and the necessity of rescaling dpa versus final experimental damage correlations, J. Nucl. Mater. 522 (2019) 86-96. https://doi.org/10.1016/j.jnucmat.2019.05.018