DOI QR코드

DOI QR Code

Thermal Performance Evaluation of Composite Phase Change Material Developed Through Sol-Gel Process

졸겔공법을 이용한 복합상변화물질의 열성능 평가

  • Received : 2023.03.17
  • Accepted : 2023.04.25
  • Published : 2023.10.01

Abstract

In this study, a composite phase change material (CPCM) produced using the SOL-GEL technique was developed as a thermal energy storage medium for low-temperature applications. Tetradecane and activated carbon (AC) were used as the core and supporting materials, respectively. The tetradecane phase change material (PCM) was impregnated into the porous structure of AC using the vacuum impregnation method, and a thin layer of silica gel was coated on the prepared composite using the SOL-GEL process, where tetraethyl orthosilicate (TEOS) was used as the silica source. The thermal performance of the CPCM was analysed using differential scanning calorimetry (DSC) and thermogravimetric analysis (TGA). DSC results showed that the pure tetradecane PCM had melting and freezing temperatures of 6.4℃ and 1.3℃ and corresponding enthalpies 226 J/g and 223.8 J/g, respectively. The CPCM exhibited enthalpy of 32.98 J/g and 27.7 J/g during the melting and freezing processes at 7.1℃ and 2.4℃, respectively. TGA test results revealed that the AC is thermally stable up to 500℃, which is much higher than the decomposition temperature of the pure tetradecane, which is around 120℃. Moreover, in the case of AC-PCM and CPCM thermal degradation started at 80℃ and 100℃, respectively. The chemical stability of the CPCM was studied using Fourier-transform infrared (FT-IR) spectroscopy, and the results confirmed that the developed composite is chemically stable. Finally, the surface morphology of the AC and CPCM was analysed using scanning electron microscopy (SEM), which confirmed the presence of a thin layer of silica gel on the AC surface after the SOL-GEL process.

본 연구에서는 콘크리트 부재에 저온 적용을 위해 SOL-GEL 기법을 이용하여 제조된 열에너지 저장 복합상변화물질(CPCM)를 개발하였다. 코어는 테트라데칸, 지지재는 활성탄(AC)을 각각 사용하였다. 진공 함침법을 이용하여 AC의 다공성 구조에 테트라데칸 상변화 물질(PCM)을 함침시키고, 테트라에틸오르토실리케이트(TEOS)를 사용한 SOL-GEL 공정을 이용하여 제조된 복합체에 실리카 겔을 얇게 코팅하였다. CPCM의 열 성능은 시차주사열량계(DSC)과 열 중량분석(TGA)을 통해 분석했다. DSC 결과 테트라데칸 PCM은 용융 및 동결 온도가 각각 6.4℃ 및 1.3℃이고 해당 엔탈피는 각각 226J/g 및 223.8J/g인 것으로 나타났다. CPCM은 7.1℃ 및 2.4℃에서 용융 및 동결 과정에서 각각 32.98J/g 및 27.7J/g의 엔탈피를 나타내었다. TGA 시험 결과 AC는 500℃까지 열적으로 안정하며, 이는 120℃ 정도인 순수 테트라데칸의 분해 온도보다 훨씬 높은 것으로 나타났다. 또한, AC-PCM과 CPCM의 경우 각각 80℃와 100℃에서 열분해가 시작되었다. CPCM의 화학적 정성 분석을 위해 푸리에 변환 적외선(FT-IR) 분광법을 이용하였으며, 그 결과 개발된 복합체가 화학적으로 안정함을 확인하였다. 마지막으로, SOL-GEL 공정 후 AC 표면에 실리카 겔의 얇은 층이 존재함을 확인하기 위해 주사전자현미경(SEM)을 이용하여 AC와 CPCM의 표면 형태를 분석하였다.

Keywords

Acknowledgement

This work was supported by the Materials and Components Technology Development Program (No. 20015240), funded by the Ministry of Trade, Industry & Energy (MOTIE, South Korea).

References

  1. Al-Yasiri, Q. and Szabo, M. (2021). "Incorporation of phase change materials into building envelope for thermal comfort and energy saving: Acomprehensive analysis." Journal of Building Engineering, Elsevier, Vol. 36, https://doi.org/10.1016/j.jobe.2020.102122.
  2. Anupam, B. R., Sahoo, U. C. and Rath, P. (2020). "Phase change materials for pavement applications: A review." Construction and Building Materials, Elsevier, Vol. 247, 118553, https://doi.org/10.1016/j.conbuildmat.2020.118553.
  3. Aridi, R. and Yehya, A. (2022). "Review on the sustainability of phase-change materials used in buildings." Energy Conversion and Management: X, Elsevier, Vol. 15, 100237, https://doi.org/10.1016/j.ecmx.2022.100237.
  4. Cai, Y., Wei, Q., Huang, F., Lin, S., Chen, F. and Gao, W. (2009). "Thermal stability, latent heat and flame retardant properties of the thermal energy storage phase change materials based on paraffin/high density polyethylene composites." Renewable Energy, Elsevier, Vol. 34, No. 10, pp. 2117-2123, https://doi.org/10.1016/j.renene.2009.01.017.
  5. Esbati, Amooie, S., Sadeghzadeh, M. A., Ahmadi, M., Pourfayaz, M. H. F. and Ming, T. (2020). "Investigating the effect of using PCM in building materialsfor energy saving: Case study of sharif energy research institute." Energy Science and Engineering, Wiley, Vol. 8, No. 4, pp. 959-972, https://doi.org/10.1002/ese3.328.
  6. Fang, G., Chen, Z. and Li, H. (2010). "Synthesis and properties of microencapsulated paraffin composites with SiO2 shell asthermal energy storage materials." Chemical Engineering Journal, Elsevier, Vol. 163, Nos. 1-2, pp. 154-159, https://doi.org/10.1016/j.cej.2010.07.054.
  7. Farnam, Y., Esmaeeli, H. S., Zavattieri, P. D., Haddock, J. and Weiss, J. (2017). "Incorporating phase change materials in concrete pavement to melt snow and ice." Cement and Concrete Composites, Elsevier, Vol. 84, pp. 134-145, https://doi.org/10.1016/j.cemconcomp.2017.09.002.
  8. Guo, M., Liang, M., Jiao, Y., Zhao, W., Duan, Y. and Liu, H. (2020). "A review of phase change materials in asphalt binder and asphalt mixture." Construction and Building Materials, Elsevier, Vol. 258, https://doi.org/10.1016/j.conbuildmat.2020.119565.
  9. Huang, X., Chen, X., Li, A., Atinafu, D., Gao, H., Dong, W. and Wang, G. (2019). "Shape-stabilized phase change materials based on porous supports for thermal energy storage applications." Chemical Engineering Journal, Elsevier, Vol. 356, pp. 641-661, https://doi.org/10.1016/j.cej.2018.09.013.
  10. Ishak, S., Mandal, S., Lee, H. S. and Singh, J. K. (2020). "Microencapsulation of stearic acid with SiO2 shell as phase change material for potential energy storage." Scientific Reports, Springer, Vol. 10, pp. 1-15, https://doi.org/10.1038/s41598-020-71940-9.
  11. Jitianu, A., Britchi, A., Deleanu, C., Badescu, V. and Zaharescu, M. M. (2003). "Comparative study of the sol-gel processes starting with different substituted Si-alkoxides." Journal of Non-Crystalline Solids, Elsevier, Vol. 319, No. 3, pp. 263-279, https://doi.org/10.1016/S0022-3093(03)00007-3.
  12. Lee, J., Wi, S., Jeong, S. G., Chang, S. J. and Kim, S. (2017). "Development of thermal enhanced n-octadecane/porous nano carbon-based materials using 3-step filtered vacuum impregnation method." Thermochimica Acta, Elsevier, Vol. 655, pp. 194-201, https://doi.org/10.1016/j.tca.2017.06.013.
  13. Li, M., Wu, Z. and Tan, J. (2012). "Properties of form-stable paraffin/silicon dioxide/expanded graphite phase change composites prepared by sol-gel method." Applied Energy, Elsevier, Vol. 92, pp. 456-461, https://doi.org/10.1016/j.apenergy.2011.11.018.
  14. Lu, S., Li, Y., Kong, X., Pang, B., Chen, Y., Zheng, S. and Sun, L. (2017). "A review of PCM energy storage technology used in buildings for the global warming solution." Energy Solutions to Combat Global Warming, Springer, Vol. 33, pp. 611-644, https://doi.org/10.1007/978-3-319-26950-4_31.
  15. Memon, S. A., Cui, H., Lo, T. Y. and Li, Q. (2015). "Development of structural-functional integrated concrete with macroencapsulated PCM for thermal energy storage." Applied Energy, Elsevier, Vol. 150, pp. 245-257, https://doi.org/10.1016/j.apenergy.2015.03.137.
  16. Pereira da Cunha,J. and Eames, P.(2016). "Thermal energy storage for low and medium temperature applications using phase change materials - A review." Applied Energy, Elsevier, Vol. 177, pp. 227-238, https://doi.org/10.1016/j.apenergy.2016.05.097.
  17. Rathore, P. K. S. and Shukla, S. K. (2021). "Enhanced thermophysical properties of organic PCM through shape stabilization for thermal energy storage in buildings: A state of the art review." Energy and Buildings, Elsevier, Vol. 236, 110799, https://doi.org/10.1016/j.enbuild.2021.110799.
  18. Ren,J., Ma, B., Si, W., Zhou, X. and Li, C.(2014). "Preparation and analysis of composite phase change material used in asphalt mixture by sol-gel method." Construction and Building Materials, Elsevier, Vol. 71, pp. 53-62, https://doi.org/10.1016/j.conbuildmat.2014.07.100.
  19. Sakulich, A. R. and Bentz, D. P. (2012). "Incorporation of phase change materials in cementitious systems via fine lightweight aggregate." Construction and Building Materials, Elsevier, Vol. 35, pp. 483-490, https://doi.org/10.1016/j.conbuildmat.2012.04.042.
  20. Si, W., Zhou, X. Y., Ma, B., Li, N., Ren, J. P. and Chang, Y. J. (2015). "The mechanism of different thermoregulation types of composite shape-stabilized phase change materials used in asphalt pavement." Construction and Building Materials, Elseiver, Vol. 98, pp. 547-558, https://doi.org/10.1016/j.conbuildmat.2015.08.038.
  21. Tao, Y. B. and He, Y. L. (2018). "A review of phase change material and performance enhancement method for latent heat storage system." Renewable and Sustainable Energy Reviews, Elsevier, Vol. 93, pp. 245-259, https://doi.org/10.1016/j.rser.2018.05.028.
  22. Urgessa, G., Yun, K. K., Yeon, J. and Yeon, J. H. (2019). "Thermal responses of concrete slabs containing microencapsulated low-transition temperature phase change materials exposed to realistic climate conditions." Cement and Concrete Composites, Elsevier, Vol. 104, 103391, https://doi.org/10.1016/j.cemconcomp.2019.103391.
  23. Yeon, J. H. and Kim, K. K. (2018). "Potential applications of phase change materials to mitigate freeze-thaw deteriorations in concrete pavement." Construction and Building Materials, Elsevier, Vol. 177, pp. 202-209, https://doi.org/10.1016/j.conbuildmat.2018.05.113.
  24. Zhang, H., Wang, X. and Wu, D. (2010). "Silica encapsulation of n-octadecane via sol-gel process: A novel microencapsulated phase-change material with enhanced thermal conductivity and performance." Journal ofColloid and Interface Science, Elsevier, Vol. 343, No. 1, pp. 246-255, https://doi.org/10.1016/j.jcis.2009.11.036.