DOI QR코드

DOI QR Code

Phytoplankton Variability in Response to Glacier Retreat in Marian Cove, King George Island, Antarctica in 2021-2022 Summer

하계 마리안 소만 빙하후퇴에 따른 식물플랑크톤 변동성 분석

  • Chorom Shim (Division of Ocean Sciences, Korea Polar Research Institute) ;
  • Jun-Oh Min (Division of Ocean Sciences, Korea Polar Research Institute) ;
  • Boyeon Lee (Division of Ocean Sciences, Korea Polar Research Institute) ;
  • Seo-Yeon Hong (Environmental Measurement & Analysis Center, National Institute of Environmental Research) ;
  • Sun-Yong Ha (Division of Ocean Sciences, Korea Polar Research Institute)
  • 심초롬 (극지연구소 해양연구본부) ;
  • 민준오 (극지연구소 해양연구본부) ;
  • 이보연 (극지연구소 해양연구본부) ;
  • 홍서연 (국립환경과학원 환경측정센터) ;
  • 하선용 (극지연구소 해양연구본부)
  • Received : 2023.07.03
  • Accepted : 2023.08.29
  • Published : 2023.08.31

Abstract

Rapid climate change has resulted in glacial retreat and increased meltwater inputs in the Antarctic Peninsula, including King George Island where Marian Cove is located. Consequently, these phenomena are expected to induce changes in the water column light properties, which in turn will affect phytoplankton communities. To comprehend the effects of glacial retreat on the marine ecosystem in Marian Cove, we investigated on phytoplankton biomass (chlorophyll-a, chl-a) and various environment parameters in this area in December 2021 and January 2022. The average temperature at the euphotic depth in January 2022 (1.41 ± 0.13 ℃) was higher than that in December 2021 (0.87 ± 0.17 ℃). Contrastingly, the average salinity was lower in January 2022 (33.9 ± 0.10 psu) than in December 2021 (34.1 ± 0.12 psu). Major nutrients, including dissolved inorganic nitrogen, phosphate, and silicate, were sufficiently high, and thus, did not act as limiting factors for phytoplankton biomass. In December 2021 and January 2022, the mean chl-a concentrations were 1.03 ± 0.64 and 0.66 ± 0.15㎍ L-1, respectively. The mean concentration of suspended particulate matter (SPM) was 24.9 ± 3.54 mgL-1 during the study period, with elevated values observed in the vicinity of the inner glacier. However, relative lower chl-a concentrations were observed near the inner glacier, possibly due to high SPM load from the glacier, resulting in reduced light attenuation by SPM shading. Furthermore, the proportion of nanophytoplankton exceeded 70% in the inner cove, contributing to elevated mean fractions of nanophytoplankton in the glacier retreat marine ecosystem. Overall, our study indicated that freshwater and SPM inputs from glacial meltwater may possibly act as main factors controlling the dynamics of phytoplankton communities in glacier retreat areas. The findings may also serve as fundamental data for better understanding the carbon cycle in Marian Cove.

세종기지가 위치한 마리안 소만은 기후 변화로 인한 빙하후퇴로 다량의 융빙수가 유입되고 있다. 이러한 빙하후퇴에 따른 생태계 반응을 예측하기 위해, 해양 환경 변화의 지시자인 식물플랑크톤 생체량 및 크기 구조와 물리, 화학적 매개변수에 대한 현장 조사를 2021년 12월, 2022년 1월 두 차례 수행하였다. 2022년 1월의 수온과 염분은 평균 1.41 ± 0.13 ℃, 33.9 ± 0.10 psu로 2021년 1월의 수온과 염분인 0.87 ± 0.17 ℃, 34.1 ± 0.12 psu보다 상대적으로 고온, 저염의 양상을 보였다. 조사시기 동안 영양염류는 대체로 높은 농도를 보여 식물 플랑크톤의 제한요소로 작용하지 않은 것으로 판단된다. 식물플랑크톤 생체량의 지표인 엽록소는 2021년 12월, 2022년 1월에 각각 1.03 ± 0.64 ㎍ L-1, 0.66 ± 0.15 ㎍ L-1로 나타났으며 부유물질은 전체 조사기간 평균 24.9 ± 3.54 mg L-1로 나타났다. 부유물질의 농도가 높은 소만내측에서 엽록소는 낮은 농도를 보였는데 이는 융빙수로부터 유입되는 고농도의 부유물질로 인해 수층 내 빛이 강하게 제한되어 식물플랑크톤의 성장이 저해된 것으로 판단된다. 또한, 빙벽 주변 정점에서 크기가 작은 미소 식물플랑크톤이 전체 식물플랑크톤 생체량에서 70% 이상 차지하는 것으로 나타났으며 이는 융빙수 유입으로 유발된 저조도 환경에서 미소 식물플랑크톤의 기여도가 증가할 수 있음을 시사한다. 따라서 본 연구는 빙하후퇴 지역에서 유입되는 담수와 부유물질이 식물플랑크톤의 생체량 및 군집구조 조절 요인이 될 수 있음을 시사하며, 결과 자료는 추후 마리안 소만의 탄소순환 변동을 파악하는 기초자료로 활용될 수 있다.

Keywords

Acknowledgement

본 연구는 한국해양과학기술원 부설 극지연구소 기관고유사업 "서남극해 온난화에 따른 탄소흡수력 변동 및 생태계 반응 연구(PE23110)"의 지원을 받아 수행되었습니다.

References

  1. Ahn, I. -Y., H. -Y. Moon, M. Jeon, and S. -H. Kang(2016), First Record of Massive Blooming of Benthic Diatoms and Their Association with Megabenthic Filter Feeders on the Shallow Seafloor of an Antarctic Fjord: Does Glacier Melting Fuel the Bloom?, Ocean Science Journal, Vol. 51, pp. 273-279. https://doi.org/10.1007/s12601-016-0023-y
  2. Bae, H., I. -Y. Ahn, J. Park, S. J. Song, J. Noh, H. Kim, and J. S. Khim(2021), Shift in polar benthic community structure in a fast retreating glacial area of Marian Cove, West Antarctica, Scientific Reports, 11, 241.
  3. Chung, H., B. Y. Lee, S. -K. Chang, J. H. Kim, J. H., and Y. Kim(2004), Ice cliff retreat and sea-ice formation observed around King Sejong Station in King George Island, West Antarctica, Ocean and Polar Research, Vol. 26, pp. 1-10. https://doi.org/10.4217/OPR.2004.26.1.001
  4. Clarke, A., E. J. Murphy, M. P. Meredith, J. C. King, L. S. Peck, D. K. A. Barnes, and R. C. Smith(2007), Climate change and the marine ecosystem of the western Antarctic Peninsula, Philosophical Transactions of the Royal Society B, Vol. 362, pp. 149-166. https://doi.org/10.1098/rstb.2006.1958
  5. Cook, A. J., A. J. Fox, D. G. Vaughan, and J. G. Ferrigno (2005), Retreating Glacier Fronts on the Antarctic Peninsula over the Past Half-Century, Science, 308(5721), pp. 541-544. https://doi.org/10.1126/science.1104235
  6. Deppeler, S. L. and A. T. Davidson(2017), Southern Ocean Phytoplankton in a Changing Climate, Frontiers in Marine Science, 4, 40.
  7. Dierssen, H. M., R. C. Smith, and M. Vernet(2002), Glacial meltwater dynamics in coastal waters west of the Antarctic peninsula, Proceedings of the National Academy of Science 99, pp. 1790-1795. https://doi.org/10.1073/pnas.032206999
  8. Dominguez, C. and A. Eraso(2007), Substantial changes happened during the last years in the icecap of King George, Insular Antarctica, Karst and Criokarst, Stud. of fac. of Earth Sciences., 45, pp. 87-110.
  9. Finkel, Z. V.(2001) Light absorption and size scaling of light-limited metabolism in marine diatoms, Limnology and Oceanography, 46(1), pp. 86-94. https://doi.org/10.4319/lo.2001.46.1.0086
  10. Garcia, M. D., M. D. F. Severini, C. Spetter, M. C. L. Abbate, M. N. Tartara, E. G. Nahuelhual, J. E. Marcovecchio, I. R. Schloss, and M. S. Hoffmeyer(2019), Effects of glacier melting on the planktonic communities of two Antarctic coastal areas (Potter Cove and Hope Bay) in summer, Regional Studies in Marine Science, 30, 100731.
  11. Gutt, J., E. Isla, J. C. Xavier, B. J. Adams, I. -Y. Ahn, C. -H. C. Cheng, C. Colesie, V. J. Cummings, G. D. Prisco, H. Griffiths, I. Hawes, I. Hogg, T. McIntyre, L. M. Meiners, D. A. Pearce, L. Peck., D. Piepenburg, R. R. Reisinger, G. K. Saba, I. R. Schloss, C. N. Sigmori, C. R. Smith, M. Vacchi, C. Verde, and D. H. Wall(2021), Antarctic ecosystems in transition-life between stresses and opportunities, Biological Reviews, 96, pp. 798-821.
  12. Jeon, M., J. L. Iriarte, E. J. Yang, S. -H. Kang, Y. Lee, H. M. Joo, I. -Y. Ahn, J. Park, G. -S. Min, and S. -J. Park(2021), Phytoplankton succession during a massive coastal diatom bloom at Marian Cove, King George Island, Antarctica, Polar Biology, 44, pp. 1993-2010.
  13. Kang, D. -H., I. -Y. Ahn, and K. -S. Choi(2009), The annual reproductive pattern of the Antarctic clam, Laternula elliptica from Marian Cove, King George Island, Polar Biology, 32, pp. 517-528. https://doi.org/10.1007/s00300-008-0544-7
  14. Kang, J. -S., S. -H. Kang, J. H. Lee, and S. Lee(2002), Seasonal variation of microalgal assemblages at a fixed station in King George Island, Antarctica, 1996, Marine Ecology Progress Series, 229, pp. 19-32. https://doi.org/10.3354/meps229019
  15. Kang, S. H., J. S. Kang, S. H. Lee, D. S. Kim, and D. Y. Kim(2000), Importance of Polar Phytoplankton for the Global Environmental Change, Korean Journal of Environmental Biology, 18(1), pp. 1-20.
  16. Kang, S. -H., J. -S. Kang, K. -H. Chung, M. -Y. Lee, B. -Y. Lee, H. Chung, Y. Kim, and D. -Y. Kim(1997), Seasonal Variation of Nearshore Antarctic Microalgae and Environmental Factors in Marian Cove, King George Island, 1996, Korean Journal of Polar Research, 8, pp. 9-27.
  17. Kejna, M., A. Arazny, and I. Sobota(2013), Climatic change on King George Island in the years 1948-2011, Polish Polar Research, 34(2), 213-235. https://doi.org/10.2478/popore-2013-0004
  18. Kim, B. K., M. Jeon., H. M. Joo, T. -W. Kim, S. -J. Park, J. Park, and S. -Y. Ha(2021), Impact of Freshwater Discharge on the Carbon Uptake Rate of Phytoplankton During Summer (January-February 2019) in Marian Cove, King George Island, Antarctica, Frontiers in Marine Science, 8, 725173.
  19. Kim, B. K., M. Jeon, S. -J. Park, H. -C. Kim, J. -O. Min, J. Park, and S. -Y. Ha(2022), Variability in the Carbon and Nitrogen Uptake Rates of Phytoplankton Associated With Wind Speed and Direction in the Marian Cove, Antarctica, Frontiers in Marine Science, 9, 887909.
  20. Lee, J., Y. K. Jin, J. K. Hong, H. J. Yoo, and H. Shon(2008), Simulation of a tidewater glacier evolution in Marian Cove, King George Island, Antarctica, Geoscience journal, 12, pp. 33-39. https://doi.org/10.1007/s12303-008-0005-x
  21. Lee, S. H., H. M. Joo, H. T. Joo, B. K. Kim, H. J. Song, M. Jeon, and S. -H. Kang(2015), Large contribution of small phytoplankton at Marian Cove, King George Island, Antarctica, based on long-term monitoring from 1996 to 2008, Polar Biology, 38, pp. 207-220. https://doi.org/10.1007/s00300-014-1579-6
  22. Llanillo, P. J., C. M. Aiken, R. R. Cordero, A. Damiani, E. Sepulveda, and B. Fernandez-Gomez(2019), Oceanographic variability induced by tides, the intraseasonal cycle and warm subsurface water intrusions inMaxwell Bay, King George Island (West-Antarctica), Scientific Report, 9, 18571.
  23. Mendes, C. R., P. Cartaxana, and V. Brotas(2007), HPLC determination of phytoplankton and microphytobenthos pigments: comparing resolution and sensitivity of a C18 and a C8 method, Limnology and Oceanography: Methods, 5, pp. 363-370. https://doi.org/10.4319/lom.2007.5.363
  24. Meredith, M. P., U. Falk, A. V. Bers, A. Mackensen, I. R. Schloss, E. R. Barlett, E. Jerosch, A. S. Busso, and D. Abele(2018), Anatomy of a glacial meltwater discharge event in an Antarctic cove, Philosophical Transactions of the Royal Society A, 376, 20170163.
  25. Montes-Hugo, M., S. C. Doney, H. W. Ducklow, W. Fraser, D. Martinson, S. E. Stammerjohn, and O. Schofield(2009), Recent Changes in Phytoplankton Communities Associated with Rapid Regional Climate Change Along the Western Antarctic Peninsula, Science, 323(5920), 1470-1473. https://doi.org/10.1126/science.1164533
  26. Moon, H. -W., W. M. R. W. Hussin, H. -C. Kim, and I. -Y. Ahn(2015), The impacts of climate change on Antarctic nearshore mega-epifaunal benthic assemblages in a glacial fjord on King George Island: Responses and implications, Ecological Indicators, 57, pp. 280-292. https://doi.org/10.1016/j.ecolind.2015.04.031
  27. Mullins, B. W. and J. Priddle(1987), Relationships between bacteria and phytoplankton in the Bransfield Strait and southern Drake Passage, British Antarctic Survey. Bulletin, 76, 51-64.
  28. Pan, B. J., M. Vernet, L. Manck, K. Forsch, L. Ekern, M. Mascioni, K. A. Barbeau, G. O. Almandoz, and A. J. Oronae(2020), Environmental drivers of phytoplankton taxonomic composition in an Antarctic fjord, Progress in Oceanography, 183, 102295.
  29. Park, M. -O. and J. S. Park(1997), HPLC method for the analysis of chlorophylls and carotenoids from marine phytoplankton, Journal of the Korean Society of Oceanography, 32, 46-55.
  30. Parsons, T. R., Y. Maita, and C. M. Lalli(1984), A Manual of Chemical and Biological Methods for Seawater Analysis, Oxford: Pergamon Press, 173.
  31. Rozema, P. D., H. J. Venables, W. H. van de Poll, A, Clarke, M. P. Meredith, and A. G. J. Buma(2017), Interannual variability in phytoplankton biomass and species composition in northern Marguerite Bay (West Antarctic Peninsula) is governed by both winter sea ice cover and summer stratification, Limnology and Oceanography, 62, pp. 235-252. https://doi.org/10.1002/lno.10391
  32. Schloss, I. R., D. Abele, S. Moreau, S. Demers, A. V. Bers, O. Gonzalez, and G. A. Ferreyra(2012), Response of phytoplankton dynamics to 19-year (1991-2009) climate trends in Potter Cove (Antarctica), Journal of Marine System, 92, pp. 53-66. https://doi.org/10.1016/j.jmarsys.2011.10.006
  33. Schloss, I. R., G. A. Ferreyra, and D. Ruiz-Pino(2002), Phytoplankton biomass in Antarctic shelf zones: a conceptual model based on Potter Cove, King George Island. Journal of Marine System, 36, pp. 129-143. https://doi.org/10.1016/S0924-7963(02)00183-5
  34. Schofield, O., H. W. Ducklow, D. G. Martinson, M. P. Meredith, M. A. Moline, and W. R. Fraser(2010), How Do Polar Marine Ecosystems Respond to Rapid Climate Change?, Science, 328(5985), pp. 1520-1523. https://doi.org/10.1126/science.1185779
  35. Smith, R. C., D. G. Martinson, S. E. Stammerjohn, R. A. Iannuzzi, and K. Ireson(2008), Bellingshausen and western Antarctic Peninsula region: Pigment biomass and sea-ice spatial/temporal distributions and interannual variabilty, Deep-Sea Research Part2, 55, pp. 1949-1963. https://doi.org/10.1016/j.dsr2.2008.04.027
  36. Van Heukelem, L., A. G. Lewitus, T. M. Kana, and N. E. Craft(1994), Improved separations of phytoplankton pigments using temperature-controlled high performance liquid chromatography, Marine Ecology Progress Series, 114, pp. 303-313. https://doi.org/10.3354/meps114303
  37. Vaughan, D. G.(2006), Recent Trends in Melting Conditions on the Antarctic Peninsula and Their Implications for Ice-sheet Mass Balance and Sea Level, Arctic, Antarctic, and Alpine Research, 38, pp. 147-152. https://doi.org/10.1657/1523-0430(2006)038[0147:RTIMCO]2.0.CO;2
  38. Weber, T. S. and C. Deutsch(2010), Ocean nutrient ratios governed by plankton biogeography, Nature, 467, pp. 550-554. https://doi.org/10.1038/nature09403
  39. Yang, J. S.(1990), Nutrients, Chlorophyll-a and primary productivity in Maxwell Bay, King George Island, Antarctica, Korean Journal of Polar Research, 1, pp. 1-18.
  40. Yoo, K. -C., H. I. Yoon, J. -K. Oh, Y. Kim, and C. Y. Kang(1999), Water column properties and dispersal pattern of suspended particulate matter (SPM) of Marian Cove during austral summer, King George Island, West Antarctica, The Sea Journal of the Korean Society of Oceanography, 4, 266-274.
  41. Yoo, K. -C., M. K. Lee, H. I. Yoon, Y. I. Lee, and C. Y. Kang(2015), Hydrography of Marian Cove, King George Island, West Antarctica: implications for iceproximal sedimentation during summer, Antarctic Science, 27, pp. 185-196. https://doi.org/10.1017/S095410201400056X