References
- Abbas, S.H. and Lee, J.R. (2018), "High-speed angular-scan pulse-echo ultrasonic propagation imager for in situ non-destructive evaluation", Adv. Comput. Des., 22(2), 223-230. https://doi.org/10.12989/sss.2018.22.2.223.
- Achintha, M. and Nowell, D. (2011), "Eigenstrain modelling of residual stresses generated by laser shock peening", J. Mater. Process. Technol., 211, 1091-1101. https://doi.org/10.1016/j.jmatprotec.2011.01.011.
- Arrigoni, M., Hu, Q., Boustie, M., Berthe, L. and Monchalin, P. (2008), "B-scan simulations with Abaqus for laser ultrasonic inspection of structures", Proceedings of the 1st International Symposium on Laser Ultrasonics: Science, Technology and Applications, Montreal, Canada, July 16-18.
- ASTER (2017), Code-Aster User Manual, version 13.4, Analysis of Structures and Thermomechanics for Studies and Research, Electricite De France R&D Department; Paris, France.
- Avillez, M.A., Anela, G.J. and Breitschwerdt, D. (2018), "Variability of the adiabatic parameter in monoatomic thermal and non-thermal plasmas", Astron. Astrophys., 616, A58. https://doi.org/10.1051/0004-6361/201832948.
- Cavuto, A., Martarelli, M., Pandarese, G., Revel, G.M. and Tomasini, E.P. (2015), "Experimental investigation by laser ultrasonics for high speed train axle diagnostics", Ultrason., 55, 48-57. https://doi.org/10.1016/j.ultras.2014.08.010.
- Choi, S. and Jhang, K.Y. (2018), "Internal defect detection using laser-generated longitudinal waves in ablation regime", J. Mech. Sci. Technol., 32(9), 4191-4200. https://doi.org/10.1007/s12206-018-0817-1.
- Dai, Y., Xu, B.Q., Luo, Y., Li, H. and Xu, G.D. (2010), "Finite element modeling of interaction of laser-generated ultrasound with a surface-breaking notch in an elastic plate", Opt. Laser Technol., 42, 693-697. https://doi.org/10.1016/j.optlastec.2009.11.012.
- Davies, S.J., Edwards, C., Taylor, G.S. and Palmer, B.P. (1993), "Laser-generated ultrasound: its properties, mechanisms and multifarious applications", J. Phys. D: Appl. Phys., 26(3), 329-348. https://doi.org/10.1088/0022-3727/26/3/001.
- Deiterding, R., Cirak, F., Mauch, S.P. and Meiron, D.I. (2007), "A virtual test facility for simulating detonation and shock-induced deformation and fracture of thin flexible shells", Int. J. Multisc. Comput. Eng., 6(1), 47-63. https://doi.org/10.1007/11758525_17.
- Ecault, R., Touchard, F., Boustie, M., Berthe, L. and Dominguez, N. (2016), "Numerical modeling of laser-induced shock experiments for the development of the adhesion test for bonded composite materials", Compos. Struct., 152, 382-394. https://doi.org/10.1016/j.compstruct.2016.05.032.
- Fassbender, S., Hoffmann, B. and Arnold, W. (1989), "Efficient generation of acoustic pressure waves by short laser pulses", Mater. Sci. Eng., A122, 37-41. https://doi.org/10.1016/0921-5093(89)90768-5.
- Gondrad, C., Nadal, M.H. and Hermerel, C. (1998), "Three ultrasonic devices for the elastic moduli determination at high temperatures", Rev. Prog. Quant. Nondestr. Eval., 17, 867-874. https://doi.org/10.1007/978-1-4615-5339-7_112.
- Guo, Y., Yang, D., Chang, Y. and Gao, W. (2014), "effect of oblique force source induced by laser ablation on ultrasonic generation", Opt. Express, 22(1), 166-176. https://doi.org/10.1364/OE.22.000166.
- Halilovic, M., Issa, S., wallin, M., Hallberg, H. and Ristinmaa, M. (2016), "Prediction of the residual state in 304 austenitic steel after laser shock peening - Effects of plastic deformation and martensitic phase transformation", Int. J. Mech. Sci., 111-112, 24-34. https://doi.org/10.1016/j.ijmecsci.2016.03.022.
- Hfaiedh, N., Peyre, P., Song, H., Popa, I., Ji, V. and Vignal, V. (2015), "Finite element analysis of laser shock peening of 2050-T8 aluminum alloy", Int. J. Fatigue, 70, 480-489. https://doi.org/10.1016/j.ijfatigue.2014.05.015.
- Hopko, S.N. and Ume, I.C. (1999), "Laser ultrasonics: simultaneous Generation by means of thermoelastic expansion and material ablation", J. Nondestr. Eval., 18(3), 91-98. https://doi.org/10.1023/A:1021856526734.
- Jamali, J., Naei, M.H., Honarvar, F. and Rajabi, M. (2011), "Acoustic scattering and radiation force function experienced by functionally graded cylindrical shells", J. Mech., 27(2), 227-243. https://doi.org/10.1017/jmech.2011.27.
- Kim, J.H., Kim, Y.J. and Kim, J.S. (2013), "Effects of simulation parameters on residual stresses for laser shock peening finite element analysis", J. Mech. Sci. Technol., 27(7), 2025-2034. https://doi.org/10.1007/s12206-012-1263-0.
- Lee, S.E., Liu, P., Ko, Y.W., Sohn, H., Park, B. and Hong, J.W. (2019), "Study on effect of laser-induced ablation for Lamb waves in a thin plate", Ultrason., 91, 121-128. https://doi.org/10.1016/j.ultras.2018.07.019.
- Liu, P., Jang, J. and Sohn, H. (2020), "Crack localization by laser-induced narrowband ultrasound and nonlinear ultrasonic modulation", Adv. Comput. Des., 25(3), 301-310. https://doi.org/10.12989/sss.2020.25.3.301.
- Liu, P., Nazirah, A.W. and Sohn, H. (2016), "Numerical simulation of damage detection using laser-generated ultrasound", Ultrason., 69, 248-258. https://doi.org/10.1016/j.ultras.2016.03.013.
- Liu, W.B., Yan, W.B., Liu, H., Tong, C.G., Fan, Y.X. and Tao, Z.Y. (2021), "Internal cylinder Identification based on different transmission of longitudinal and shear ultrasonic waves", Sens., 21, 723. https://doi.org/10.3390/s21030723.
- Ma, Y., Hu, Z., Tang, Y., Ma, S., Chu, Y., Li, X., Luo, W., Guo, L., Zeng, X. and Lu, Y. (2020), "Laser opto-ultrasonic dual detection for simultaneous compositional, structural, and stress analyses for wire + arc additive manufacturing", Addit. Manuf., 31, 100956. https://doi.org/10.1016/j.addma.2019.100956.
- Martynenko, A.S., Skobelev, I.Y. and Pikuz, S.A. (2019), "Possibility of estimating high-intensity-laser plasma parameters by modelling spectral line profiles in spatially and time-integrated X-ray emission", Appl. Phys. B, 125, 31. https://doi.org/10.1007/s00340-019-7149-4.
- Mi, B. and Ume, I.C. (2002), "Parametric studies of laser generated ultrasonic signals in ablative regime: time and frequency domains", J. Nondestr. Eval., 21(1), 23-33. https://doi.org/10.1023/A:1019980725994.
- Murray, T.W. and Wanger, J.W. (1998), "Thermoelastic and ablative generation of ultrasound: source effects", Rev. Prog. Quant. Nondestr. Eval., 17, 619-625. https://doi.org/10.1007/978-1-4615-5339-7_80.
- Pan, Y., Chigarev, N. and Audoin, B. (2010), "Bulk waves excited by a laser line pulse in a bi-layer cylinder", J. Phys. Conf. Ser., 214, 012044. https://doi.org/10.1088/1742-6596/214/1/012044.
- Pan, Y., Rossignol, C. and Audoin, B. (2004), "Acoustic waves generated by a laser line pulse in cylinders; Application to the elastic constants measurement", J. Acoust. Soc. Am., 115(4), 1537-1545. https://doi.org/10.1121/1.1651191.
- Pei, C., Demachi, K., Zhu, H., Fukuchi, T., Koyama, K. and Uesaka, M. (2012), "Inspection of Cracks Using Laser-Induced Ultrasound with Shadow Method: Modeling and Validation", Opt. Laser Technol., 44, 860-865. https://doi.org/10.1016/j.optlastec.2011.11.018.
- Rao, Z., Liu, J., Wang, P.C., Li, Y. and Liao, S. (2014), "Modeling of cold metal transfer spot welding of AA6061-T6 Aluminum alloy and Galvanized mild Steel", J. Manuf. Sci. Eng., 136(5), 051001. https://doi.org/10.1115/1.4027673.
- Sakamoto, J.M.S., Tittmann, B.R., Baba, A. and Pacheco, G.M. (2011), "Directivity measurements in aluminum using a laser ultrasonics system", J. Phys. Conf. Ser., 278, 012032. https://doi.org/10.1088/1742-6596/278/1/012032.
- Sherman, B., Liou, H.C. and Balogun, O. (2015), "Thin film interface stresses produced by high amplitude laser generated surface acoustic waves", J. Appl. Phys., 118, 135303. https://doi.org/10.1063/1.4931937.
- Steiner, K.V. (1992), Defect Classifications in Composites Using Ultrasonic Nondestructive Evaluation Techniques, In Damage Detection in Composite Materials., ASTM International.
- Stratoudaki, T., Edwards, C., Dixon, S. and Palmer, S.B. (2003), "Opical absorbtion of epoxy resin and its role in the laser ultrasonic generation mechanism in composite materials", Rev. Quant. Nondestr. Eval., 22, 965-972. https://doi.org/10.1063/1.1570238.
- Taheri, H., Koester, L.W., Bigelow, T.A. and Bond, L.J. (2017), "Thermoelastic finite element modeling of laser generated ultrasound in additive manufacturing materials", Proceedings of the ASNT Annual Conference, 188-198.
- Veres, I.A., Berer, T. and Burgholzer, P. (2013), "Numerical modeling of thermoelastic generation of ultrasound by laser irradiation in the coupled thermoelasticity", Ultrason., 53, 141-149. https://doi.org/10.1016/j.ultras.2012.05.001.
- Wang, C., Wang, X., Xu, Y. and Gao, Z. (2016), "Numerical modeling of the confined laser shock peening of the OFHC copper", Int. J. Mech. Sci., 108-109, 104-114. https://doi.org/10.1016/j.ijmecsci.2016.02.002.
- Wang, J., Shen, Z., Xu, B., Ni, X., Guan, J. and Lu, J. (2007), "Numerical simulation of laser-generated ultrasound in non-metallic material by the finite element method", Opt. Laser Technol., 39, 806-813. https://doi.org/10.1016/j.optlastec.2006.01.009.
- Yang, J., Liu, P., Yang, S., Lee, H. and Sohn, H. (2015), "Laser based impedance measurement for pipe corrosion and bolt-loosening detection", Smart Struct. Syst., 15(1), 41-55. https://doi.org/10.12989/sss.2015.15.1.041.
- Zhang, K., Zhou, Z., Zhou, J. and Sun, G. (2015), "Characteristics of laser ultrasound interaction with multilayered dissimilar metals adhesive interface by numerical simulation", Appl. Surf. Sci., 353, 284-290. https://doi.org/10.1016/j.apsusc.2015.06.103.
- Zhao, J., Dong, Y. and Ye, C. (2017), "Laser shock peening induced residual stresses and the effect on crack propagation behavior", Int. J. Fatigue, 100, 407-417. https://doi.org/10.1016/j.ijfatigue.2017.04.002.
- Zhao, Y., Shen, Z., Lu, J. and Ni, X. (2007), "A finite element model for laser-induced leaky waves at fluid-solid interfaces", Phys. Lett. A, 370, 104-109. https://doi.org/10.1016/j.physleta.2007.05.071.
- Zhou, Z., Zhang, K., Zhou, J., Sun, G. and Wang, J. (2015), "Application of laser ultrasonic technique for non-contact detection of structural surface-breaking cracks", Opt. Laser. Technol., 73, 173-178. https://doi.org/10.1016/j.optlastec.2015.04.026.