DOI QR코드

DOI QR Code

Finite element modeling of laser ultrasonics nondestructive evaluation technique in ablation regime

  • Salman Shamsaei (NDE Lab, Faculty of Mechanical Engineering, K. N. Toosi University of Technology) ;
  • Farhang Honarvar (NDE Lab, Faculty of Mechanical Engineering, K. N. Toosi University of Technology)
  • Received : 2022.08.31
  • Accepted : 2023.05.10
  • Published : 2023.07.25

Abstract

In this paper, finite element modeling of the laser ultrasonics (LU) process in ablation regime is of interest. The momentum resulting from the removal of material from the specimen surface by the laser beam radiation in ablation regime is modeled as a pressure pulse. To model this pressure pulse, two equations are required: one for the spatial distribution and one for the temporal distribution of the pulse. Previous researchers have proposed various equations for the spatial and temporal distributions of the pressure pulse in different laser applications. All available equations are examined and the best combination of the temporal and spatial distributions of the pressure pulse that provides the most accurate results is identified. This combination of temporal and spatial distributions has never been used for modeling laser ultrasonics before. Then by using this new model, the effects of variations in pulse duration and laser spot radius on the shape, amplitude, and frequency spectrum of ultrasonic waves are studied. Furthermore, the LU in thermoelastic regime is simulated by this model and compared with LU in ablation regime. The interaction of ultrasonic waves with a defect is also investigated in the LU process in ablation regime. Good agreement of the results obtained from the new finite element model and available experimental data confirms the accuracy of the proposed model.

Keywords

References

  1. Abbas, S.H. and Lee, J.R. (2018), "High-speed angular-scan pulse-echo ultrasonic propagation imager for in situ non-destructive evaluation", Adv. Comput. Des., 22(2), 223-230. https://doi.org/10.12989/sss.2018.22.2.223.
  2. Achintha, M. and Nowell, D. (2011), "Eigenstrain modelling of residual stresses generated by laser shock peening", J. Mater. Process. Technol., 211, 1091-1101. https://doi.org/10.1016/j.jmatprotec.2011.01.011.
  3. Arrigoni, M., Hu, Q., Boustie, M., Berthe, L. and Monchalin, P. (2008), "B-scan simulations with Abaqus for laser ultrasonic inspection of structures", Proceedings of the 1st International Symposium on Laser Ultrasonics: Science, Technology and Applications, Montreal, Canada, July 16-18.
  4. ASTER (2017), Code-Aster User Manual, version 13.4, Analysis of Structures and Thermomechanics for Studies and Research, Electricite De France R&D Department; Paris, France.
  5. Avillez, M.A., Anela, G.J. and Breitschwerdt, D. (2018), "Variability of the adiabatic parameter in monoatomic thermal and non-thermal plasmas", Astron. Astrophys., 616, A58. https://doi.org/10.1051/0004-6361/201832948.
  6. Cavuto, A., Martarelli, M., Pandarese, G., Revel, G.M. and Tomasini, E.P. (2015), "Experimental investigation by laser ultrasonics for high speed train axle diagnostics", Ultrason., 55, 48-57. https://doi.org/10.1016/j.ultras.2014.08.010.
  7. Choi, S. and Jhang, K.Y. (2018), "Internal defect detection using laser-generated longitudinal waves in ablation regime", J. Mech. Sci. Technol., 32(9), 4191-4200. https://doi.org/10.1007/s12206-018-0817-1.
  8. Dai, Y., Xu, B.Q., Luo, Y., Li, H. and Xu, G.D. (2010), "Finite element modeling of interaction of laser-generated ultrasound with a surface-breaking notch in an elastic plate", Opt. Laser Technol., 42, 693-697. https://doi.org/10.1016/j.optlastec.2009.11.012.
  9. Davies, S.J., Edwards, C., Taylor, G.S. and Palmer, B.P. (1993), "Laser-generated ultrasound: its properties, mechanisms and multifarious applications", J. Phys. D: Appl. Phys., 26(3), 329-348. https://doi.org/10.1088/0022-3727/26/3/001.
  10. Deiterding, R., Cirak, F., Mauch, S.P. and Meiron, D.I. (2007), "A virtual test facility for simulating detonation and shock-induced deformation and fracture of thin flexible shells", Int. J. Multisc. Comput. Eng., 6(1), 47-63. https://doi.org/10.1007/11758525_17.
  11. Ecault, R., Touchard, F., Boustie, M., Berthe, L. and Dominguez, N. (2016), "Numerical modeling of laser-induced shock experiments for the development of the adhesion test for bonded composite materials", Compos. Struct., 152, 382-394. https://doi.org/10.1016/j.compstruct.2016.05.032.
  12. Fassbender, S., Hoffmann, B. and Arnold, W. (1989), "Efficient generation of acoustic pressure waves by short laser pulses", Mater. Sci. Eng., A122, 37-41. https://doi.org/10.1016/0921-5093(89)90768-5.
  13. Gondrad, C., Nadal, M.H. and Hermerel, C. (1998), "Three ultrasonic devices for the elastic moduli determination at high temperatures", Rev. Prog. Quant. Nondestr. Eval., 17, 867-874. https://doi.org/10.1007/978-1-4615-5339-7_112.
  14. Guo, Y., Yang, D., Chang, Y. and Gao, W. (2014), "effect of oblique force source induced by laser ablation on ultrasonic generation", Opt. Express, 22(1), 166-176. https://doi.org/10.1364/OE.22.000166.
  15. Halilovic, M., Issa, S., wallin, M., Hallberg, H. and Ristinmaa, M. (2016), "Prediction of the residual state in 304 austenitic steel after laser shock peening - Effects of plastic deformation and martensitic phase transformation", Int. J. Mech. Sci., 111-112, 24-34. https://doi.org/10.1016/j.ijmecsci.2016.03.022.
  16. Hfaiedh, N., Peyre, P., Song, H., Popa, I., Ji, V. and Vignal, V. (2015), "Finite element analysis of laser shock peening of 2050-T8 aluminum alloy", Int. J. Fatigue, 70, 480-489. https://doi.org/10.1016/j.ijfatigue.2014.05.015.
  17. Hopko, S.N. and Ume, I.C. (1999), "Laser ultrasonics: simultaneous Generation by means of thermoelastic expansion and material ablation", J. Nondestr. Eval., 18(3), 91-98. https://doi.org/10.1023/A:1021856526734.
  18. Jamali, J., Naei, M.H., Honarvar, F. and Rajabi, M. (2011), "Acoustic scattering and radiation force function experienced by functionally graded cylindrical shells", J. Mech., 27(2), 227-243. https://doi.org/10.1017/jmech.2011.27.
  19. Kim, J.H., Kim, Y.J. and Kim, J.S. (2013), "Effects of simulation parameters on residual stresses for laser shock peening finite element analysis", J. Mech. Sci. Technol., 27(7), 2025-2034. https://doi.org/10.1007/s12206-012-1263-0.
  20. Lee, S.E., Liu, P., Ko, Y.W., Sohn, H., Park, B. and Hong, J.W. (2019), "Study on effect of laser-induced ablation for Lamb waves in a thin plate", Ultrason., 91, 121-128. https://doi.org/10.1016/j.ultras.2018.07.019.
  21. Liu, P., Jang, J. and Sohn, H. (2020), "Crack localization by laser-induced narrowband ultrasound and nonlinear ultrasonic modulation", Adv. Comput. Des., 25(3), 301-310. https://doi.org/10.12989/sss.2020.25.3.301.
  22. Liu, P., Nazirah, A.W. and Sohn, H. (2016), "Numerical simulation of damage detection using laser-generated ultrasound", Ultrason., 69, 248-258. https://doi.org/10.1016/j.ultras.2016.03.013.
  23. Liu, W.B., Yan, W.B., Liu, H., Tong, C.G., Fan, Y.X. and Tao, Z.Y. (2021), "Internal cylinder Identification based on different transmission of longitudinal and shear ultrasonic waves", Sens., 21, 723. https://doi.org/10.3390/s21030723.
  24. Ma, Y., Hu, Z., Tang, Y., Ma, S., Chu, Y., Li, X., Luo, W., Guo, L., Zeng, X. and Lu, Y. (2020), "Laser opto-ultrasonic dual detection for simultaneous compositional, structural, and stress analyses for wire + arc additive manufacturing", Addit. Manuf., 31, 100956. https://doi.org/10.1016/j.addma.2019.100956.
  25. Martynenko, A.S., Skobelev, I.Y. and Pikuz, S.A. (2019), "Possibility of estimating high-intensity-laser plasma parameters by modelling spectral line profiles in spatially and time-integrated X-ray emission", Appl. Phys. B, 125, 31. https://doi.org/10.1007/s00340-019-7149-4.
  26. Mi, B. and Ume, I.C. (2002), "Parametric studies of laser generated ultrasonic signals in ablative regime: time and frequency domains", J. Nondestr. Eval., 21(1), 23-33. https://doi.org/10.1023/A:1019980725994.
  27. Murray, T.W. and Wanger, J.W. (1998), "Thermoelastic and ablative generation of ultrasound: source effects", Rev. Prog. Quant. Nondestr. Eval., 17, 619-625. https://doi.org/10.1007/978-1-4615-5339-7_80.
  28. Pan, Y., Chigarev, N. and Audoin, B. (2010), "Bulk waves excited by a laser line pulse in a bi-layer cylinder", J. Phys. Conf. Ser., 214, 012044. https://doi.org/10.1088/1742-6596/214/1/012044.
  29. Pan, Y., Rossignol, C. and Audoin, B. (2004), "Acoustic waves generated by a laser line pulse in cylinders; Application to the elastic constants measurement", J. Acoust. Soc. Am., 115(4), 1537-1545. https://doi.org/10.1121/1.1651191.
  30. Pei, C., Demachi, K., Zhu, H., Fukuchi, T., Koyama, K. and Uesaka, M. (2012), "Inspection of Cracks Using Laser-Induced Ultrasound with Shadow Method: Modeling and Validation", Opt. Laser Technol., 44, 860-865. https://doi.org/10.1016/j.optlastec.2011.11.018.
  31. Rao, Z., Liu, J., Wang, P.C., Li, Y. and Liao, S. (2014), "Modeling of cold metal transfer spot welding of AA6061-T6 Aluminum alloy and Galvanized mild Steel", J. Manuf. Sci. Eng., 136(5), 051001. https://doi.org/10.1115/1.4027673.
  32. Sakamoto, J.M.S., Tittmann, B.R., Baba, A. and Pacheco, G.M. (2011), "Directivity measurements in aluminum using a laser ultrasonics system", J. Phys. Conf. Ser., 278, 012032. https://doi.org/10.1088/1742-6596/278/1/012032.
  33. Sherman, B., Liou, H.C. and Balogun, O. (2015), "Thin film interface stresses produced by high amplitude laser generated surface acoustic waves", J. Appl. Phys., 118, 135303. https://doi.org/10.1063/1.4931937.
  34. Steiner, K.V. (1992), Defect Classifications in Composites Using Ultrasonic Nondestructive Evaluation Techniques, In Damage Detection in Composite Materials., ASTM International.
  35. Stratoudaki, T., Edwards, C., Dixon, S. and Palmer, S.B. (2003), "Opical absorbtion of epoxy resin and its role in the laser ultrasonic generation mechanism in composite materials", Rev. Quant. Nondestr. Eval., 22, 965-972. https://doi.org/10.1063/1.1570238.
  36. Taheri, H., Koester, L.W., Bigelow, T.A. and Bond, L.J. (2017), "Thermoelastic finite element modeling of laser generated ultrasound in additive manufacturing materials", Proceedings of the ASNT Annual Conference, 188-198.
  37. Veres, I.A., Berer, T. and Burgholzer, P. (2013), "Numerical modeling of thermoelastic generation of ultrasound by laser irradiation in the coupled thermoelasticity", Ultrason., 53, 141-149. https://doi.org/10.1016/j.ultras.2012.05.001.
  38. Wang, C., Wang, X., Xu, Y. and Gao, Z. (2016), "Numerical modeling of the confined laser shock peening of the OFHC copper", Int. J. Mech. Sci., 108-109, 104-114. https://doi.org/10.1016/j.ijmecsci.2016.02.002.
  39. Wang, J., Shen, Z., Xu, B., Ni, X., Guan, J. and Lu, J. (2007), "Numerical simulation of laser-generated ultrasound in non-metallic material by the finite element method", Opt. Laser Technol., 39, 806-813. https://doi.org/10.1016/j.optlastec.2006.01.009.
  40. Yang, J., Liu, P., Yang, S., Lee, H. and Sohn, H. (2015), "Laser based impedance measurement for pipe corrosion and bolt-loosening detection", Smart Struct. Syst., 15(1), 41-55. https://doi.org/10.12989/sss.2015.15.1.041.
  41. Zhang, K., Zhou, Z., Zhou, J. and Sun, G. (2015), "Characteristics of laser ultrasound interaction with multilayered dissimilar metals adhesive interface by numerical simulation", Appl. Surf. Sci., 353, 284-290. https://doi.org/10.1016/j.apsusc.2015.06.103.
  42. Zhao, J., Dong, Y. and Ye, C. (2017), "Laser shock peening induced residual stresses and the effect on crack propagation behavior", Int. J. Fatigue, 100, 407-417. https://doi.org/10.1016/j.ijfatigue.2017.04.002.
  43. Zhao, Y., Shen, Z., Lu, J. and Ni, X. (2007), "A finite element model for laser-induced leaky waves at fluid-solid interfaces", Phys. Lett. A, 370, 104-109. https://doi.org/10.1016/j.physleta.2007.05.071.
  44. Zhou, Z., Zhang, K., Zhou, J., Sun, G. and Wang, J. (2015), "Application of laser ultrasonic technique for non-contact detection of structural surface-breaking cracks", Opt. Laser. Technol., 73, 173-178. https://doi.org/10.1016/j.optlastec.2015.04.026.