• Title/Summary/Keyword: ablation regime

Search Result 14, Processing Time 0.026 seconds

Finite element modeling of laser ultrasonics nondestructive evaluation technique in ablation regime

  • Salman Shamsaei;Farhang Honarvar
    • Advances in Computational Design
    • /
    • v.8 no.3
    • /
    • pp.219-236
    • /
    • 2023
  • In this paper, finite element modeling of the laser ultrasonics (LU) process in ablation regime is of interest. The momentum resulting from the removal of material from the specimen surface by the laser beam radiation in ablation regime is modeled as a pressure pulse. To model this pressure pulse, two equations are required: one for the spatial distribution and one for the temporal distribution of the pulse. Previous researchers have proposed various equations for the spatial and temporal distributions of the pressure pulse in different laser applications. All available equations are examined and the best combination of the temporal and spatial distributions of the pressure pulse that provides the most accurate results is identified. This combination of temporal and spatial distributions has never been used for modeling laser ultrasonics before. Then by using this new model, the effects of variations in pulse duration and laser spot radius on the shape, amplitude, and frequency spectrum of ultrasonic waves are studied. Furthermore, the LU in thermoelastic regime is simulated by this model and compared with LU in ablation regime. The interaction of ultrasonic waves with a defect is also investigated in the LU process in ablation regime. Good agreement of the results obtained from the new finite element model and available experimental data confirms the accuracy of the proposed model.

Analysis on Ablation of KL-3 Engine Nozzle Throat Using Image Analysis (영상분석을 통한 KL-3 엔진 노즐목 삭마 경향 분석)

  • Kim, Young-Han;Park, Sung-Jin;Ryu, Chul-Sung;Kim, Yong-Wook;Han, Sang-Yeop;Kim, Byung-Hun
    • 한국연소학회:학술대회논문집
    • /
    • 2003.05a
    • /
    • pp.51-55
    • /
    • 2003
  • In this research, authors tried to measure the shape of the nozzle throat of KL-3 engines, which is the main engine of KSR-III rocket, to find the increase of nozzle area caused by the thermal ablation. For the purpose, we invented an image-based method instead of the 3D pointer, which is actually inaccessible to such large scale engines. As a result, our equipment showed satisfactory accuracy and performance. Analysing the results of experiments, we find that the pattern of ablation is determined by the spray pattern and that the process of thermal ablation phenomena can be categorized in three regimes - the first regime that the shape of nozzle throat is maintained and ablation is negligible, the second regime that saw-tooth form is developed and ablation is accelerated, and the third regime that the saw-tooth form is already established and the growth of ablation rate is reduced. Also, we find that the ratio of area increase after 60 seconds combustion is +5.82% and conclude that this figure is acceptable and satisfactory.

  • PDF

Simulations for Internal Defect Inspection Using Laser Generated Ultrasonic Wave in Ablation Regime (어블레이션 영역 레이저 초음파의 시뮬레이션과 내부결함 검사)

  • Kim, Jin-Gyum;Choi, Sungho;Jhang, Kyung-Young
    • Journal of the Korean Society for Nondestructive Testing
    • /
    • v.34 no.3
    • /
    • pp.226-232
    • /
    • 2014
  • In the present study, the characteristics of laser ultrasound in the ablation regime are investigated using simulations and experiments. The laser ultrasonic technique has been recognized as a noncontact method in the field of nondestructive tests (NDTs). In hostile environments (such as hot temperatures), this method has various advantages over the conventional contact ultrasonic method. In particular, in the ablation regime, the laser ultrasonic technique is suitable for inspecting internal defects because of the high amplitude and directivity of the longitudinal wave. In this paper, a simulation model for laser ultrasound in the ablation regime was developed. This model was subsequently applied to a defective specimen using the B-scan method to locate defects. Finally, we performed an experimental test to verify the simulation results. Consequently, the simulation demonstrated good agreement with the experimental test.

Numerical analysis of fs laser ablation of metals (금속의 펨토초 어블레이션의 수치해석)

  • Oh B.K.;Kim D.S.;Kim J.G.;Lee J.H.
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 2006.05a
    • /
    • pp.657-658
    • /
    • 2006
  • Although there are many numerical models to simulate fs laser ablation of metals, no model can analyze the ablation phenomena over a wide range of fluence. In this work, a numerical code for simulating the fs laser ablation phenomena of metals has been developed. The two temperature model is employed to predict the ablation rate and the crater shape of metals using phase explosion mechanism in the relatively high fluence regime. Also, the ultrashort thermoelastic model is used for the low fluence regime to account for spallation of the sample by high strain rate. It has been demonstrated that the thermoelastic stress generated within the sample can exceed the yield stress of the material even near the threshold fluence. Numerical computation results are compared with the experiment for Cu and Ni and show good agreement. Discussions are made on the hydrodynamic model considering phase change and hydrodynamic flow.

  • PDF

Measurements of Ablations on Nozzle Throats of KL-3 Engines Using Image Analysis (영상분석을 통한 KL-3 엔진 노즐목 삭마량 측정)

  • 김영한;고영성;박성진;류철성;강선일;오승협
    • Journal of the Korean Society of Propulsion Engineers
    • /
    • v.7 no.3
    • /
    • pp.1-7
    • /
    • 2003
  • In this research, it is intended to measure shape of the nozzle throat of the KL-3 engine, which is the main engine of the KSR-III rocket. For the purpose, an image-based method was invented to replace the 3D pointer, which is actually inaccessible to such large scale engines. As a result, our equipment showed satisfactory Performances. Analysing the results of experiments, we find that the pattern of ablation is determined by the spray pattern and that the process of thermal ablation phenomena can be categorized in three regimes - the first regime that the shape of nozzle throat is maintained and ablation is negligible, the second regime that saw-tooth form is developed and ablation is accelerated, and the third regime that the saw-tooth form is already established and the growth of ablation rate is reduced Also, we find that the ratio of area increase after 60 seconds combustion is +5.82% and conclude that the ratio is acceptable and satisfactory.

Improvement of Tribological Characteristics of Multi-Scale Laser-Textured Surface in terms of Lubrication Regime (윤활영역에서 멀티크기 Laser Surface Texturing 효과)

  • Kim, Jong-Hyoung;Choi, Si Geun;Segu, Dawit Zenebe;Jung, Yong-Sub;Kim, Seock-Sam
    • Tribology and Lubricants
    • /
    • v.30 no.1
    • /
    • pp.59-63
    • /
    • 2014
  • Laser Surface Texturing(LST) is a surface engineering process used to improve tribological characteristics of materials by creating patterned microstructures on the mechanical contact surface. In LST technology, a pulsated laser beam is used to create arranged dimples on a surface by a material ablation process, which can improve such as load capacity, wear resistances, lubrication lifetime, and reduce friction coefficients. In the present study, the effect of multi-scale LST on lubricant regime was investigated. A pulsed Nd:YAG laser was applied on the bearing steel(AISI 52100) to create arranged dimples. To optimize the surface texturing effect on friction, multi-scale texture dimples with some specific formula arrays were fabricated by combining circles, ellipses and the laser ablation process. The tribological testing of multi-scale textured surface was performed by a flat-on-flat unidirectional tribometer under lubrication and the results compared with that of the non-textured surface. Through an increase in sliding speed, the beneficial effect of multi-scale LST performance was achieved. The multi-scale textured surface had lower friction coefficient performances than the non-textured surface due to the hydrodynamic lubrication effect.

Development of numerical-computation program to predict thermal shock induced by fs laser processing of meatals (펨토초 레이저 금속 가공시 발생하는 열충격 수치계산 프로그램 개발)

  • O, Bu-Guk;Kim, Dong-Sik;Kim, Jae-Gu;Lee, Je-Hun
    • Laser Solutions
    • /
    • v.11 no.1
    • /
    • pp.19-24
    • /
    • 2008
  • It has been recognized that laser dicing of wafers results in low mechanical strength compared to the conventional sawing techniques. Thermal shock generated by rapid thermal loading is responsible for this problem. This work presents a two-dimensional ultra-short thermo elastic model for numerical simulation of femtosecond laser ablation of metals in the high-fluence regime where the phase explosion is dominant. Laser-induced thermoelastic stress is analyzed for Ni. The results show that the laser-induced thermal shock is large enough to induce mechanical damages.

  • PDF

Probing of Microscale Phase-Change Phenomena Based on Michelson Interforometry (Michelson 간섭계를 응용한 미세 상변화 현상 계측)

  • Kim, Dong-Sik;Park, Hee-K.;Grigoropoulos, Costas P.
    • Proceedings of the KSME Conference
    • /
    • 2001.06d
    • /
    • pp.348-353
    • /
    • 2001
  • Experimental schemes that enable characterization of phase-change phenomena in the micro scale regime is essential for understanding the phase-change kinetics. Particularly, monitoring rapid vaporization on a submicron length scale is an important yet challenging task in a variety of laser-processing applications, including steam laser cleaning and liquid-assisted material ablation. This paper introduces a novel technique based on Michelson interferometry for probing the liquid-vaporization process on a solid surface heated by a KrF excimer laser pulse (${\lambda}=248nm,\;FWHM=24\;ns$) in water. The effective thickness of a microbubble layer has been measured with nanosecond time resolution. The maximum bubble size and growth rate are estimated to be of the order of $0.1{\mu}m\;and\;1\;m/s$, respectively. The results show that the acoustic enhancement in the laser induced vaporization process is caused by bubble expansion in the initial growth stage, not by bubble collapse. This work demonstrates that the interference method is effective for detecting bubble nucleation and microscale vaporization kinetics.

  • PDF