Acknowledgement
This work is supported by the Korea Agency for Infrastructure Technology Advancement (KAIA) grant funded by the Ministry of Land, Infrastructure and Transport (grant: 21RTRP-B146050-04), and the National Research Foundation of Korea (NRF) Grant funded by the Korea government (MSIT) (No. 2022R1F1A1074316).
References
- Kolar, J.W., Zach, F.C.: A novel three-phase utility interface minimizing line current harmonics of high-power telecommunications rectifier modules. IEEE Trans. Ind. Electron. 44(4), 456-466 (1997) https://doi.org/10.1109/41.605619
- Saravana, P.P., Kalpana, R., Singh, B., Bhuvaneswari, G.: Design and implementation of sensorless voltage control of front-end rectifier for power quality improvement in telecom system. IEEE Trans. Ind. Appl. 54(3), 2438-2448 (2018) https://doi.org/10.1109/TIA.2018.2790949
- Lee, J.-S., Lee, K.-B., Blaabjerg, F.: Predictive control with discrete space-vector modulation of Vienna rectifier for driving PMSG of wind turbine systems. IEEE Trans. Power Electron. 34(12), 12368-12353 (2019)
- Lee, J.-S., Lee, K.-B.: An open-switch fault detection method and tolerance controls based on SVM in a grid-connected T-type rectifier with unity power factor. IEEE Trans. Ind. Electron. 61(12), 7092-7104 (2014) https://doi.org/10.1109/TIE.2014.2316228
- Lee, J.-S., Lee, K.-B.: A novel carrier-based PWM method for Vienna rectifier with a variable power factor. IEEE Trans. Ind. Electron. 63(1), 3-12 (2016) https://doi.org/10.1109/TIE.2015.2464293
- Lee, J.-S., Lee, K.-B.: Carrier-based discontinuous PWM method for VIENNA rectifiers. IEEE Trans. Power Electron. 30(6), 2896-2900 (2015) https://doi.org/10.1109/TPEL.2014.2365014
- Lee, J.-S., Lee, K.-B.: Performance analysis of carrier-based discontinuous PWM method for Vienna rectifiers with neutral-point voltage balance. IEEE Trans. Power Electron. 31(6), 4075-4084 (2016) https://doi.org/10.1109/TPEL.2015.2477828
- Kolar, J.W., Ertl, H., Zach, F.C.: Space vector-based analytical analysis of the input current distortion of a three-phase discontinuous-mode boost rectifier. IEEE Trans. Ind. Electron. 10(6), 733-745 (1995)
- Gu, L., Jin, K.: A three-phase isolated bidirectional AC/DC converter and its modified SVPWM algorithm. IEEE Trans. Power Electron. 30(10), 5458-5468 (2015) https://doi.org/10.1109/TPEL.2014.2378274
- Li, Y., Zhao, H.: A space vector switching pattern hysteresis control strategy in Vienna rectifier. IEEE Access. 8, 60142-60151 (2020) https://doi.org/10.1109/ACCESS.2020.2977656
- Malinowski, M., Kazmierkowski, M.P., Hansen, S., Blaabjerg, F., Marques, G.D.: Virtual-fux-based direct power control of three-phase PWM rectifiers. IEEE Trans. Ind. Appl. 37(4), 1019-1027 (2001) https://doi.org/10.1109/28.936392
- Zhang, M., Hang, L., Yao, W., Lu, Z., Tolbert, L.: A novel strategy for three-phase/switch/level (Vienna) rectifier under severe unbalanced grids. IEEE Trans. Ind. Electron. 60(10), 4243-4252 (2013) https://doi.org/10.1109/TIE.2012.2217721
- Lai, R., Wang, F., Burgos, R., Boroyevich, D., Jiang, D., Zhang, D.: Average modeling and control design for VIENNA-type rectifiers considering the dc-link voltage balance. IEEE Trans. Power Electron. 24(11), 2509-2522 (2009) https://doi.org/10.1109/TPEL.2009.2032262
- Zhu, W., Chen, C., Duan, S., Wang, T., Liu, P.: A carrier-based discontinuous PWM method with varying clamped area for Vienna rectifier. IEEE Trans. Ind. Electron. 66(9), 7177-7188 (2019) https://doi.org/10.1109/TIE.2018.2873524
- Zhang, L., Zhao, R., Ju, P., Ji, C., Zou, Y., Ming, Y., Xing, Y.: A modified DPWM with neutral point voltage balance capability for three-phase Vienna rectifiers. IEEE Trans. Power Electron. 69(1), 263-273 (2021) https://doi.org/10.1109/TPEL.2020.3002660
- Zou, Y., Xing, Y., Zhang, L., Zheng, Z., Liu, X., Hu, H., Wang, T., Wang, Y.: Dynamic-space-vector discontinuous PWM for three-phase Vienna rectifiers with unbalanced neutral-point voltage. IEEE Trans. Power Electron. 36(8), 9015-9026 (2021) https://doi.org/10.1109/TPEL.2021.3057120
- Ming, Y., Zou, Y., Xing, Y., Zhao, H., Wang, T., Wang, Y.: A hybrid carrier-based DPWM with controllable NP voltage for three-phase Vienna rectifiers. IEEE Trans. Transport. Electrific. 8(2), 1874-1884 (2022) https://doi.org/10.1109/TTE.2021.3129778
- Lee, J.-S., Lee, K.-B.: Time-offset injection method for neutral-point AC ripple voltage reduction in a three-level inverter. IEEE Trans. Power Electron. 31(3), 1931-1941 (2016) https://doi.org/10.1109/TPEL.2015.2439689
- Wu, C., Xiong, X., Taul, M.G., Blaabjerg, F.: On the equilibrium points in three-phase PLL based on the d-axis voltage normalization. IEEE Trans. Power Electron. 36(11), 12146-12150 (2021) https://doi.org/10.1109/TPEL.2021.3074986
- Ishiwaki, S., Iwaki, T., Sugihara, Y., Nanamori, K, Yamamoto, M.: Analysis of false turn-on phenomenon of GaN HEMT with parasitic inductances for propose novel design method focusing on peak gate voltage. In: Proc. IEEE Energy Convers. Congr. Expo., pp. 1395-1401 (2017)
- Ma, H., Feng, M., Tian, Y., Chen, X.: Research on carried-based PWM with zero-sequence component injection for Vienna type rectifiers. J. Power Electron. 19(2), 560-568 (2019)
- Park. J.-H., Yang, S.-H., Lee, K.B.: Synchronous carrier-based pulse width modulation switching method for Vienna rectifier. J. Power Electron. 18(2), 604-614 (2018)
- Zhao, H., Zheng, T.Q., Li, Y., Du, J., Shi, P.: Control and analysis of Vienna rectifier used as the generator-side converter of PMSG-based wind power generation systems. J. Power Electron. 17(1), 212-221 (2017) https://doi.org/10.6113/JPE.2017.17.1.212
- Saravana, P.P., Kalpana, R., Singh, B.: Three-phase three-level boost-type front-end PFC rectifier for improving power quality at input AC mains of telecom loads. J. Power Electron. 18(6), 1819-1829 (2018)