DOI QR코드

DOI QR Code

Adaptive diagonal matrix compensation matrix based virtual synchronous generator power decoupling control strategy

  • Bin Li (Department of Electrical Engineering, Henan Polytechnic University) ;
  • Ning Sun (Department of Electrical Engineering, Henan Polytechnic University) ;
  • Hao Wang (Department of Electrical Engineering, Henan Polytechnic University) ;
  • Dandan Hu (Jiaozuo Power Supply Company, State Grid Henan Electric Power Company) ;
  • Zhihui Zeng (Department of Electrical Engineering, Henan Polytechnic University)
  • Received : 2022.09.23
  • Accepted : 2023.03.13
  • Published : 2023.09.20

Abstract

This paper discusses the power coupling problem of the traditional virtual synchronous generator (VSG) control strategy in medium and low-voltage microgrids, analyzes the cause of power coupling, and discusses the necessity for decoupling. In addition, a power decoupling control strategy based on an adaptive diagonal matrix compensation matrix is proposed. By compensating for the coupling component, the output power of the VSG is completely decoupled. To cope with the operating characteristics of frequent load switching on the grid side of a microgrid, the proposed strategy tracks variations in the static operating point of the VSG and automatically adjusts the compensation component. Simultaneously, the stability of the VSG is analyzed, using the transient instability criterion of the power system, to ensure decoupling. Finally, the effectiveness of the proposed control strategy is verified by simulation and experimental results.

Keywords

Acknowledgement

This work is supported by the project of 'Natural Science Foundation of Henan Province (212300410147)' and 'Henan Provincial Science and Technology Research Project (222102220034)'

References

  1. Li, Y., Yang, X., Ran, Q., et al.: Energy structure, digital economy, and carbon emissions: evidence from China. Environ. Sci. Pollut. Res. 28(45), 64606-64629 (2021) https://doi.org/10.1007/s11356-021-15304-4
  2. De-Brabandere, K., Bolsens, B., Van-Den Keybus, J., et al.: A voltage and frequency droop control method for parallel inverters. IEEE Trans. Power Electron. 22(4), 1107-1115 (2007) https://doi.org/10.1109/TPEL.2007.900456
  3. Kerdphol, T., Watanabe, M., Hongesombut, K., Mitani, Y.: Self-adaptive virtual inertia control-based fuzzy logic to improve frequency stability of microgrid with high renewable penetration. IEEE Access. 7, 76071-76083 (2019) https://doi.org/10.1109/ACCESS.2019.2920886
  4. Badal, F.R., Das, P., Sarker, S.K., et al.: A survey on control issues in renewable energy integration and microgrid. Protect. Control Modern Power Syst. 4(1), 1-27 (2019) https://doi.org/10.1186/s41601-019-0115-7
  5. Che, L., Shahidehpour, M., Alabdulwahab, A., et al.: Hierarchical coordination of a community microgrid with AC and DC microgrids. IEEE Trans. Smart Grid. 6(6), 3042-3051 (2015) https://doi.org/10.1109/TSG.2015.2398853
  6. Fathi, A., Shafee, Q., Bevrani, H.: Robust frequency control of microgrids using an extended virtual synchronous generator. IEEE Trans. Power Syst. 33(6), 6289-6297 (2018) https://doi.org/10.1109/TPWRS.2018.2850880
  7. Liu, J., Miura, Y.: Synchronverters: Comparison of dynamic characteristics between virtual synchronous generator and droop control in inverter-based distributed generators. IEEE Trans. Power Electron. 31(5), 3600-3611 (2016)
  8. Zhong, Q., Weiss, G.: Synchronverters: Inverters that mimic synchronous generators. IEEE Trans. Industr. Electron. 58(4), 1259-1267 (2011) https://doi.org/10.1109/TIE.2010.2048839
  9. Bouzid, A.E., Sicard, P., Chaoui, H., et al.: A novel decoupled trigonometric saturated droop controller for power sharing in islanded low-voltage microgrids. Electr. Power Syst. Res. 168, 146-161 (2019) https://doi.org/10.1016/j.epsr.2018.11.016
  10. Wu, T., Liu, Z., Liu, J., et al.: A unified virtual power decoupling method for droop-controlled parallel inverters in microgrids. IEEE Trans. Power Electron. 31(8), 5587-5603 (2016) https://doi.org/10.1109/TPEL.2015.2497972
  11. Ren, M.W., Li, T., Shi, K., et al.: Coordinated control strategy of virtual synchronous generator based on adaptive moment of inertia and virtual impedance. IEEE J. Emerg. Select. Top. Circ. Syst. 11(1), 99-110 (2021) https://doi.org/10.1109/JETCAS.2021.3051320
  12. He, J.W., Li, Y.W.: Analysis, design, and implementation of virtual impedance for power electronics interfaced distributed generation. IEEE Trans. Ind. Appl. 47(6), 2525-2538 (2011) https://doi.org/10.1109/TIA.2011.2168592
  13. Matas, J., Castilla, M., Vicuna, L.G., et al.: Virtual impedance loop for droop-controlled single-phase parallel inverters using a second-order general-integrator scheme. IEEE Trans. Power Electron. 25(12), 2993-3002 (2010) https://doi.org/10.1109/TPEL.2010.2082003
  14. Li, B., Zhou, L.: Power decoupling method based on the diagonal compensating matrix for VSG-controlled parallel inverters in the microgrid. Energies 10(12), 2159 (2017)
  15. Peng, Z.S., Wang, J., WEN, E. T., et al.: Virtual synchronous generator control strategy incorporating improved governor control and coupling compensation for AC microgrid. IET Power Electron. 12(6), 1455-1461 (2019) https://doi.org/10.1049/iet-pel.2018.6167
  16. Liang, X.D., Andalib-Bin Karim, C., Li, W.X., et al.: Adaptive virtual impedance-based reactive power sharing in virtual synchronous generator controlled microgrids. IEEE Trans. Ind. Appl. 57(1), 46-60 (2021) https://doi.org/10.1109/TIA.2020.3039223
  17. Li, M.X., Wang, Y., Liu, Y.H., et al.: Enhanced power decoupling strategy for virtual synchronous generator. IEEE Access. 8, 73601-73613 (2020) https://doi.org/10.1109/ACCESS.2020.2987808
  18. Wang, Y., Wai, R.J.: Adaptive fuzzy-neural-network power decoupling strategy for virtual synchronous generator in micro-grid. IEEE Trans. Power Electron. 37(4), 3878-3891 (2022) https://doi.org/10.1109/TPEL.2021.3120519
  19. Wu, W.H., Chen, Y.D., Zhou, L.M., et al.: Sequence impedance modeling and stability comparative analysis of voltage-controlled VSGs and current-controlled VSGs. IEEE Trans. Ind. Electron. 66(8), 6460-6472 (2019) https://doi.org/10.1109/TIE.2018.2873523
  20. Wu, H., Ruan, X.B., Yang, D.S., et al.: Small-signal modeling and parameters design for virtual synchronous generators. IEEE Trans. Industr. Electron. 63(7), 4292-4303 (2016) https://doi.org/10.1109/TIE.2016.2543181
  21. He, X.Q., Geng, H., Li, R.Q., et al.: Transient stability analysis and enhancement of renewable energy conversion system during LVRT. IEEE Trans. Sustain. Energy. 11(3), 1612-1623 (2020) https://doi.org/10.1109/TSTE.2019.2932613