DOI QR코드

DOI QR Code

Speed and flux observer based on adaptive linear neuron for induction motor

  • Liangbin Liu (School of Electrical Engineering, Hunan Industry Polytechnic) ;
  • Deyu Liu (School of Electrical Engineering, Hunan Industry Polytechnic)
  • 투고 : 2023.03.25
  • 심사 : 2023.06.22
  • 발행 : 2023.09.20

초록

The robustness and economy of the induction motor drive system can be improved by a high-precision observation algorithm instead of an encoder. Such an algorithm is adopted to obtain the speed and flux linkage of the induction motor. In this paper, an adaptive linear neuron speed digital observer for the induction motor is proposed. First, discrete voltage and current models are established. Then, a novel speed and rotor flux digital observer based on the adaptive linear neuron with less calculation complexity is presented. This observer contains a hidden layer and two input signals that can work with the rotor flux error and the deviation of the error. The adaptive learning method of the weight coefficients described by the difference equation is presented. Finally, a simulation and an experiment are conducted to certify the correctness and effectiveness of the proposed adaptive linear neuron speed digital observer.

키워드

과제정보

This work was supported by Hunan Provincial Natural Science Foundation of China (2022JJ60035).

참고문헌

  1. Zhang, Yi., Liu, H., Zhang, Z., Luo, Y., Guo, Q., Liao, S.: Cloud computing-based real-time global optimization of battery aging and energy consumption for plug-in hybrid electric vehicles. J. Power Sources 479, 229069 (2020) 
  2. Husain, I., et al.: Electric drive technology trends, challenges, and opportunities for future electric vehicles. Proc. IEEE 109(6), 1039-1059 (2021)  https://doi.org/10.1109/JPROC.2020.3046112
  3. Pengyun, S., Huazhang, W., Junyi, Z., Yanghui, L., Tao, D.: Research on phase current reconstruction for DPWM2 of induction motor drive system based on DC-link current sampling. Machines 10(11), 1104 (2022) 
  4. Schwenk, K., Meisenbacher, S., Briegel, B., Harr, T., Hagenmeyer, V., Mikut, R.: Integrating battery aging in the optimization for bidirectional charging of electric vehicles. IEEE Trans. Smart Grid 12(6), 5135-5145 (2021)  https://doi.org/10.1109/TSG.2021.3099206
  5. Narasipuram, R.P., Yadlapalli, R.T.: Performance analysis and design optimisation of 3-O Packed U cell inverter for industrial drive applications. Int. J. Math. Model. Numer. Optim. 9(3), 309-337 (2019) 
  6. Chen, J., Yuan, X., Blaabjerg, F., Lee, C.H.T.: Overview of fundamental frequency sensorless algorithms for AC motors: a unified perspective. IEEE J. Emerg. Select. Top. Power Electron. 2, 2 (2022) 
  7. Dong, Z., Song, Z., Wang, W., Liu, C.: Improved zero-sequence current hysteresis control based-space vector modulation for open-end winding PMSM drives with common DC bus. IEEE Trans. Ind. Electron. 2, 2 (2022) 
  8. Dong, Z., Chen, Y., Feng, K., Liu, C.: Multi-vector-based model predictive current control with zero-sequence current suppression for three-phase series-end winding permanent magnet synchronous motor drives. IEEE Trans. Transp. Electrif. 2, 2 (2022) 
  9. Sun, W., Yu, Y., Wang, G., Li, B., Xu, D.: Design method of adaptive full order observer with or without estimated fux error in speed estimation algorithm. IEEE Trans. Power Electron. 31(3), 2609-2626 (2016)  https://doi.org/10.1109/TPEL.2015.2440373
  10. Verrelli, C., Tomei, P., Lorenzani, E., Migliazza, G., Immovilli, F.: Nonlinear tracking control for sensorless permanent magnet synchronous motors with uncertainties. Control. Eng. Pract. 60, 157-170 (2017)  https://doi.org/10.1016/j.conengprac.2016.12.011
  11. Chen, J., Huang, J.: Alternative solution regarding problems of adaptive observer compensating parameters uncertainties for sensorless induction motor drives. IEEE Trans. Industr. Electron. 67(7), 5879-5888 (2020)  https://doi.org/10.1109/TIE.2019.2947862
  12. Zhang, T., Xu, Z., Li, J., Zhang, H., Gerada, C.: A third-order super twisting extended state observer for dynamic performance enhancement of sensorless IPMSM drives. IEEE Trans. Industr. Electron. 67(7), 5948-5958 (2020)  https://doi.org/10.1109/TIE.2019.2959498
  13. Zhang, T., Xu, Z., Gerada, C.: A nonlinear extended state observer for sensorless IPMSM drives with optimized gains. IEEE Trans. Ind. Appl. 56(2), 1485-1494 (2020)  https://doi.org/10.1109/TIA.2019.2959537
  14. Xu, Z., Zhang, T., Bao, Y., Zhang, H., Gerada, C.: A nonlinear extended state observer for rotor position and speed estimation for sensorless IPMSM drives. IEEE Trans. Power Electron. 35(1), 733-743 (2020)  https://doi.org/10.1109/TPEL.2019.2914119
  15. Jo, G.-J., Choi, J.-W.: Rotor flux estimator design with offset extractor for sensorless-driven induction motors. IEEE Trans. Power Electron. 37(4), 4497-4510 (2021)  https://doi.org/10.1109/TPEL.2021.3126331
  16. Alonge, F., D'Ippolito, F., Sferlazza, A.: Sensorless control of induction-motor drive based on robust kalman filter and adaptive speed estimation. IEEE Trans. Industr. Electron. 61(3), 1444-1453 (2014) 
  17. Liu, Z.-H., Wei, H.-L., Li, X.-H., Liu, K., Zhong, Q.-C.: Global identification of electrical and mechanical parameters in PMSM drive based on dynamic self-learning PSO. IEEE Trans. Power Electron. 33(12), 10858-10871 (2018)  https://doi.org/10.1109/TPEL.2018.2801331
  18. Sayeef, S., Foo, G., Rahman, M.F.: Rotor position and speed estimation of a variable structure direct-torque-controlled IPM synchronous motor drive at very low speeds including standstill. IEEE Trans. Industr. Electron. 57(11), 3715-3723 (2010)  https://doi.org/10.1109/TIE.2010.2041730
  19. Miao, Y., Liu, H., Du, J., Peng, D.: Speed observer of ADALINE for induction motors. Electr. Mach. Control 22(11), 52-57 (2018)