DOI QR코드

DOI QR Code

Small-signal stability of AC/DC capacity and MMC controller voltage loop dominated systems

  • Received : 2022.05.17
  • Accepted : 2023.02.27
  • Published : 2023.09.20

Abstract

The stability of an MMC AC/DC hybrid system shows differences with changes in its operating state. However, the time domain analysis method cannot quantitatively evaluate the dynamic characteristics of the system. In this paper, a small-signal model of an MMC AC/DC hybrid system is established to analyze the system stability under continuous changes of the parameters. First, the dynamic characteristics of the small-signal model and the time-domain simulation model are compared to verify the accuracy of the small-signal model. Second, the dynamic stability of the MMC under four typical operating states is analyzed, and the influences of the AC system capacity and impedance angle on the stability domain of the system are evaluated. Then, the modal analysis method is used to solve the dominant mode and participation factor of the critically stable system. In addition, the oscillation characteristics of the system are solved. Finally, the variation trend of the system stability dominated by the controller parameters and DC capacity is obtained. The obtained results show that the controller parameters of the MMC do not contribute to the system oscillation characteristics. The selection of the AC/DC capacity leads to differences in system stability. Under PV control, the MMC AC/DC hybrid system presents stronger stability, and the system is easily affected by low-frequency oscillation.

Keywords

Acknowledgement

This work was supported by State Grid Corporation of China Science and Technology Project "Research on Dynamic Stability of MMC AC/DC Hybrid System".

References

  1. Ji, Ke., Tang, G., Pang, H., et al.: Impedance modeling and analysis of MMC-HVDC for offshore wind farm integration. IEEE Trans. Power Delivery 35(03), 1488-1501 (2020) https://doi.org/10.1109/TPWRD.2019.2946450
  2. Zhao, Cong, Kedong, L., Zhang, Hang, et al.: Enhancement of ZSVI by circulating current injection for full-bridge MMC with low energy storage requirements. IEEE J. Emerg. Select. Top. Power Electron. 8(4), 141-151 (2020) https://doi.org/10.1109/JESTPE.2019.2948148
  3. Li, H., Fan, X., Liu, S.: Small-signal stability modeling for MMC-based DC grids with voltage slope control and influence analysis of parameters. IEEE Access 10, 4686-4698 (2021) https://doi.org/10.1109/ACCESS.2021.3138739
  4. Julian, F., Gilbert, B., Jon, S., et al.: Improving small-signal stability of an MMC with CCSC by control of the internally stored energy. IEEE Trans. Power Delivery 33(01), 429-439 (2018) https://doi.org/10.1109/TPWRD.2017.2725579
  5. Jiabing, Hu., Zhu, J., Wan, M.: Modeling and analysis of modular multilevel converter in DC voltage control timescale. IEEE Trans. Industr. Electron. 66(08), 6449-6459 (2019) https://doi.org/10.1109/TIE.2018.2875640
  6. Ji, Ke., Pang, H., Li, Y., et al.: A hierarchical small-signal controller stability analysis method for the MMCs. IEEE Trans. Power Delivery 37(4), 2587-2598 (2022)
  7. Zhu, J., Jiabing, Hu., et al.: Small-signal stability of MMC grid-tied system under two typical unbalanced grid conditions. IEEE Trans on Industry Appl. 58(4), 5005-5014 (2022) https://doi.org/10.1109/TIA.2022.3176596
  8. Xiaojun, Lu., Xiang, W., Lin, W., et al.: Comparative study of small-signal stability under weak AC system integration for different VSCs. IEEE J. Emerging Selected Top. Power Electron. 9(4), 4482-4499 (2021) https://doi.org/10.1109/JESTPE.2020.3024196
  9. Hao, Q., Li, Z., Yue, C., et al.: Small-signal model and dynamics of MMC-HVDC grid under unbalanced grid conditions. IEEE Trans on Power Delivery 36(5), 3172-3184 (2021) https://doi.org/10.1109/TPWRD.2020.3035650
  10. Zou, Y., Qin, J., Zhang, L., et al.: Inequality constraints based method for fast estimation of droop slope stability regions for MMC-based MTDC systems. IEEE Trans. Power Delivery 36(6), 3689-3700 (2021) https://doi.org/10.1109/TPWRD.2020.3048307
  11. Zhu, J., Jiabing, Hu., Wang, S., et al.: Small-signal modeling and analysis of mmc under unbalanced grid conditions based on linear time-periodic (LTP) method. IEEE Trans. Power Delivery 36(1), 205-214 (2021) https://doi.org/10.1109/TPWRD.2020.2976776
  12. Chunyi Guo, Zihan Yin. Comparative study on small-signal stability of MMC-HVDC system under rectification and inversion modes. Proceedings of the CSEE, 2018; p. 1-9.
  13. Xiaojun, Lu., Xian, W., Lin, W., et al.: Analysis of wideband oscillation of hybrid MMC interfacing weak AC power system. IEEE J. Emerg. Selected Top. Power Electron. 9(6), 7408-7421 (2021) https://doi.org/10.1109/JESTPE.2020.3024740
  14. Zhu, Shu, Liu, Kaipei, Le, Jian, et al.: Stability Assessment of Modular Multilevel Converters Based on Linear Time-Periodic Theory: Time-Domain vs. Frequency-Domain. IEEE Transactions on Power Delivery. 5(37), 3980-3995 (2022) https://doi.org/10.1109/TPWRD.2022.3142751
  15. Jin, Yu., Xiao, Q., Jia, H., et al.: A Dual-Layer back-stepping control method for lyapunov stability in modular multilevel converter based STATCOM. IEEE Trans. Industr. Electron. 3(69), 2166-2179 (2022) https://doi.org/10.1109/TIE.2021.3063973
  16. Wang, C., Zhang, Li., et al.: Analysis and suppression of the frequency-aliasing phenomenon related to the sorting-algorithm-based voltage-balance strategy in an MMC system. IEEE Trans on Power Electronics 37(1), 170-182 (2022) https://doi.org/10.1109/TPEL.2021.3098629
  17. Li, Y., Tang, G., Ge, J., et al.: Modeling and damping control of modular multilevel converter based DC grid. IEEE Trans Power System. 33(1), 723-735 (2018) https://doi.org/10.1109/TPWRS.2017.2691737
  18. Shi, K., Peng, Lu., Sun, Y., et al.: Impedance modeling and stability analysis of modular multilevel converter considering frequency coupling characteristics. J. Power Electron. 22(8), 1598-2092 (2022) https://doi.org/10.1007/s43236-022-00431-z
  19. Gontijo, G.F., Kazem, M., et al.: State space modeling of an offshore wind power plant with an MMC-HVDC connection for an eigenvalue-based stability analysis. IEEE Access 10, 82844-82869 (2022) https://doi.org/10.1109/ACCESS.2022.3196368