DOI QR코드

DOI QR Code

Population genetics of sand crab Ovalipes punctatus in Korean waters

한국 연근해에 출현하는 깨다시꽃게 개체군의 유전학적 분석

  • Hyeon Gyu LEE (Fisheries Resources Research Center, National Institute of Fisheries Science) ;
  • Se Hun MYOUNG (Fisheries Resources Research Center, National Institute of Fisheries Science) ;
  • Jeong-Hoon LEE (Fisheries Resources Research Center, National Institute of Fisheries Science) ;
  • Youn Hee CHOI (Division of Fisheries Life Sciences, Pukyong National University)
  • 이현규 (국립수산과학원 수산자원연구센터) ;
  • 명세훈 (국립수산과학원 수산자원연구센터) ;
  • 이정훈 (국립수산과학원 수산자원연구센터) ;
  • 최윤희 (부경대학교 수산생명과학부)
  • Received : 2023.06.30
  • Accepted : 2023.08.28
  • Published : 2023.08.31

Abstract

To identify sand crab Ovalipes punctatus populations and establish management units for each population, mtDNA COI regions were analyzed. As a result, the clade of O. punctatus in Korea were separated by two with a genetic distance of 0.17-2.08%, and there was no significant difference in the result of pairwise FST values representing genetic differentiation by sampling areas (p > 0.05). Also, no geographical separation found in the distribution of haplotypes and the results of the haplotype network. This result suggests that O. punctatus larvae were dispersed for a long time by the ocean current by suffering meroplanktonic period for 1 month, and increased the gene flow due to the development of the swimming legs for the increase in mobility. Therefore, in the results of mtDNA COI region analysis of O. punctatus in the East Sea, Yellow Sea, South Sea and East China Sea (Ieodo) of Korea, no clear intra-species differentiation was found.

Keywords

Acknowledgement

본 연구는 2023년도 국립수산과학원 수산과학연구사업(R2023001)의 지원을 받아 수행된 연구입니다.

References

  1. Begg GA, Friedland KD and Pearce JB. 1999. Stock identification and its role in stock assessment and fisheries management: an overview. Fish Res 43, 1-8. https://doi.org/10.1016/S0165-7836(99)00062-4. 
  2. Carbonell A, Aparicio-Gonzalez A, Papiol V and Cartes JE. 2021. Composition and distribution of the larval decapod community in the deep sea of the Western Mediterranean Sea Balearic Sub-basin. Fish Oceanogr 30, 205-218. https://doi.org/10.1111/fog.12514. 
  3. Cowen RK and Sponaugle S. 2009. Larval dispersal and marine population connectivity. Ann Rev Mar Sci 1, 443-466. https://doi.org/10.1146/annurev.marine.010908.163757. 
  4. Folmer O, Black M, Hoeh W, Lutz R and Vrijenhoek R. 1994. DNA primers for amplification of mitochondrial cytochrome coxidase subunit I from diverse metazoan invertebrates. Mol Mar Biol Biotechnol 3, 294-9. 
  5. Fu YX. 1997. Statistical tests of neutrality of mutations against population growth, hitchhiking and background selection. Genetics 147, 915-925. https://doi.org/10.1093/genetics/147.2.915. 
  6. Grant WAS and Bowen BW. 1998. Shallow population histories in deep evolutionary lineages of marine fishes: insights from sardines and anchovies and lessons for conservation. J Hered 89, 415-426. https://doi.org/10.1093/jhered/89.5.415. 
  7. Hall TA. 1999. BioEdit: a user-friendly biological sequence alignment editor and analysis program for Windows 95/98/NT. Nucleic Acids Symp Ser 41, 95-98. 
  8. Hamm DE and Burton RS. 2000. Population genetics of black abalone, Haliotis cracherodii, along the central California coast. J Exp Mar Biol Ecol 254, 235-247. https://doi.org/10.1016/S0022-0981(00)00283-5. 
  9. Hellberg ME. 2009. Gene flow and isolation among populations of marine animals. Annu Rev Ecol Evol Syst 40, 291-310. https://doi.org/10.1146/annurev.ecolsys.110308.120223. 
  10. Hong SY, Park KY, Park CW, Han CH, Suh HL, Yun SG, Song CB, Jo SG, Lim HS, Kang YS, Kim DJ, Ma CW, Son MH, Cha HK, Kim KB, Choi SD, Park KY, Oh CW, Kim DN, Shon HS, Kim JN, Choi JH, Kim MH and Choi IY. 2006. Marine invertebrates in Korean Coasts. Academy Publ Co., Seoul, Korea, 317-409. 
  11. Hedgecock D. 1986. Is gene flow from pelagic larval dispersal important in the adaptation and evolution of marine invertebrates? Bull Mar Sci 39, 550-564. 
  12. Hwang GL, Lee YC and Chang CS. 1997. Mitochondrial DNA analysis of the fleshy prawn (Penaeus chinensis) for stock discrimination in the Yellow Sea. Korean J Fish Aquat Sci 30, 88-94. 
  13. Ichikawa H and Beardsley RC. 2002. The current system in the Yellow and East China Seas. J Oceanogr 58, 77-92. https://doi.org/10.1023/A:1015876701363. 
  14. Kamei M. 1976. Biology of Hiratsume-gani, Ovalipes punctatus (De Haan), in Sagami Bay [Japan]. Japanese J Ecol. 
  15. Kang JH, Park JY, Kim EM and Ko HS. 2013. Population genetic analysis and origin discrimination of snow crab (Chionoecetes opilio) using microsatellite markers. Mol Biol Rep 40, 5563-5571. https://doi.org/10.1007/s11033-013-2658-4. 
  16. Kimura M. 1980. A simple method for estimating evolutionary rates of base substitutions through comparative studies of nucleotide sequences. J Mol Evol 16, 111-120. https://doi.org/10.1007/BF01731581. 
  17. Lee HJ., Yoon SJ, Hyun YS, Kim HJ, Hwang SI, Bae JS and Chung KW. 2013. Analysis of microsatellite loci for swimming crab Portunus trituberculatus populations in the Korean side of the Yellow Sea. J Life Sci 23, 1088-1095. http://dx.doi.org/10.5352/JLS.2013.23.9.1088. 
  18. Liu ZJ and Cordes JF. 2004. DNA marker technologies and their applications in aquaculture genetics. Aquaculture 238, 1-37. https://doi.org/10.1016/j.aquaculture.2004.05.027. 
  19. Ma H, Ma C, Li C, Lu J, Zou X, Gong Y, Wang W, Chen W, Ma L and Xia L 2015. First mitochondrial genome for the red crab (Charybdis feriata) with implication of phylogenomics and population genetics. Sci Rep 5, 1-14. https://doi.org/10.1038/srep11524. 
  20. McMillen-Jackson AL and Bert TM. 2004. Mitochondrial DNA variation and population genetic structure of the blue crab Callinectes sapidus in the eastern United States. Mar Biol 145, 769-777. https://doi.org/10.1007/s00227-004-1353-3. 
  21. Park GH and Kim JK. 2022. Population Structure of Korean Paraplagusia japonica (Cynoglossidae) Based on Morphological and Molecular Markers. Korean J Ichthyol, 34(2), 73-85. https://doi.org/10.35399/ISK.34.2.1 
  22. Puebla O, Sevigny JM, Sainte-Marie B, Brethes JC, Burmeister A, Dawe EG and Moriyasu M. 2008. Population genetic structure of the snow crab (Chionoecetes opilio) at the Northwest Atlantic scale. Can J Fish Aquat 65, 425-436. https://doi.org/10.1139/f07-163. 
  23. Rogers AR and Harpending H. 1992. Population growth makes waves in the distribution of pairwise genetic differences. Mol Biol Evol 9, 552-569. https://doi.org/10.1093/oxfordjournals.molbev.a040727. 
  24. Sasaki K and Kawasaki T. 1980. Some aspects of the reproductive biology of the swimming crab, Ovalipes punctatus (De Haan). Tohoku J Agric Res 30, 183-194. 
  25. Slatkin M and Hudson RR. 1991. Pairwise comparisons of mitochondrial DNA sequences in stable and exponentially growing populations. Genetics, 129, 555-562. https://doi.org/10.1093/genetics/129.2.555. 
  26. Sung, YG, Nam YK, Han HS and Bang IC. 2007. Genetic Diversity and Variation of Chinese Shrimp Fenneropenaeus chinensis Populations as Inferred by AFLP Fingerprinting. J Aquaculture 20, 255-259. 
  27. Suppapan J, Songrak A, Meesook W and Supmee V. 2023. Population Genetic Structure of the Blue Swimming Crab (Portunus pelagicus) along the Andaman Sea Coast of Thailand. Sains Malays 52, 369-380. https://doi.org/10.17576/jsm-2023-5202-05. 
  28. Tajima F. 1989. Statistical method for testing the neutral mutation hypothesis by DNA polymorphism. Genetics 123, 585-595. https://doi.org/10.1093/genetics/123.3.585. 
  29. Takahashi K and Kawaguchi K. 2001. Nocturnal occurrence of the swimming crab Ovalipes punctatus in the swash zone of a sandy beach in northeastern Japan. Fish Bull-National Oceanic and Atmospheric Administration 99, 510-515. 
  30. Tamura K, Stecher G and Kumar S. 2021. MEGA11: molecular evolutionary genetics analysis version 11. Mol Biol Evol 38, 3022-3027.  https://doi.org/10.1093/molbev/msab120
  31. Thompson JD, Higgins DG and Gibson TJ. 1994. CLUSTAL W: improving the sensitivity of progressive multiple sequence alignment through sequence weighting, position-specific gap penalties and weight matrix choice. Nucleic Acids Res 22, 4673-4680.  https://doi.org/10.1093/nar/22.22.4673
  32. Wang Y, Yu C, Zheng J, Chen X and Ning P. 2011. Biological characteristics and seasonal variations of Ovalipes punctatus in the Zhoushan fishing ground. Oceanol Limnol Sin 42, 274-8. https://doi.org/10.3109/19401736.2013.873894. 
  33. Wares JP and Cunningham CW. 2001. Phylogeography and historical ecology of the North Atlantic intertidal. Evolution, 55, 2455-2469. https://doi.org/10.1111/j.0014-3820.2001.tb00760.x. 
  34. Weersing K and Toonen RJ. 2009. Population genetics, larval dispersal, and connectivity in marine systems. Mar Ecol Prog Ser 393, 1-12. https://doi.org/10.3354/meps08287. 
  35. Wright S. 1978. Variability within and among populations. Evolution and the Genetics of Populations. University of Chicago Press, Chicago, U.S.A., 512. 
  36. Yeon IJ, Song MY, Hwang HJ, Sohn MH, Kim JB, Im YJ, Kim YS, Kim KS and Bang IC. 2008. Population structure of the blue and purple types of the blue crab Portunus trituberculatus (Miers) from the west sea of Korea based on morphometric characteristics and AFLP analysis. Korean J Fish Aquat Sci 41, 94-101. https://doi.org/10.5657/kfas.2008.41.2.094. 
  37. Zhang CI. 2010. Marine Fisheries Resource Ecology. Pukyong National University, Busan. Korea, 1-561. 
  38. Zheng W, Han Z, Chen G, Yu C and Gao T. 2015. Mitochondrial DNA variation in the East China Sea and Yellow Sea populations of swimming crab Ovalipes punctatus. Mitochondrial DNA 26, 559-565. https://doi.org/10.3109/19401736.2013.873894.