DOI QR코드

DOI QR Code

A Geoacoustic Model at the SSDP-101 Long-core Site in the Korea Strait

  • Woo-Hun Ryang (Division of Science Education and Institute of Science Education, Jeonbuk National University) ;
  • Seong-Pil Kim (Marine Geology & Energy Division, Korea Institute of Geoscience and Mineral Resources)
  • Received : 2023.08.17
  • Accepted : 2023.08.25
  • Published : 2023.08.31

Abstract

The Korea Strait comprises a continental shelf in a shallow sea that experienced glacio-eustastic sea-level changes during the Quaternary period. A long core of 76.6 m in length was acquired at the South Sea Drilling Project site (SSDP-101; 34°19.666'E and 128°16.335'N) with a 60 m water deep. The uppermost massive sand beds were interpreted as sandy sediments of the nearshore marine sand ridge in the shallow sea during the transgression of sea level, whereas the lower parts of alternating sandy and muddy beds were interpreted as deposits in marsh, estuary, and tidal flat environments. A three-layered geoacoustic model was reconstructed for the sedimentary succession in the high-resolution seismic profile based on a 140-grain size and sediment type of core SSDP-101. For the actual underwater simulation and experiments, the in-situ P-wave speeds were calculated using the sound speed ratio of the Hamilton method.

Keywords

Acknowledgement

The original data of marine geophysics and geology were acquired from the Korea Strait science program: Study on Quaternary stratigraphy and environmental changes in Korean sea (KIGAM, 2000; KR-00(B)-02). We are grateful to anonymous reviewers and Prof. Park, Kyung-Ae (Seoul National University) for their critical and helpful comments. WHR thanks Ms. Kang, Sol-Ip (Jeonbuk National University) for working on the computer graphics. This research was supported by the National Research Foundation of Korea (NRF) grant funded by the Korea government (MSIT) (NRF-2022R1F1A1063126) and by the project of development of the integrated geophysical survey and real-scale data processing technologies for 3D high-resolution imaging of the marine subsurface (GP2020-023) of KIGAM.

References

  1. ADD (Agency for Defense Development), 2004, Seismic stratigraphy and deep coring in the major harbors. NSDC-408-040241, 76 p. (in Korean with English abstract)
  2. Boyce, R.E., 1976, Definition and laboratory techniques of compressional sound velocity parameter and wet-water, wet bulk density, and porosity parameter by gravimetric and gamma ray attenuation techniques. Initial Reports of the Deep Sea Drilling Project 33, U.S. Government Printing Office, Washington, DC, p. 931-958.
  3. Carey, W.M., Doutt, J., Evans, R.B., and Dillman, L.M., 1995, Shallow-water sound transmission measurements on the New Jersey continental shelf. IEEE Journal of Oceanic Engineering, 20, 321-336. https://doi.org/10.1109/48.468241
  4. Cederberg, R.J., Siegmann, W.L., and Carey, W.M., 1995, Influence of geoacoustic modeling on predictability of low-frequency propagation in range-dependent, shallow-water environments. Journal of the Acoustical Society of America, 97, 2754-2766. https://doi.org/10.1121/1.411907
  5. Chough, S.K., Lee, H.J., and Yoon, S.H., 2000, Marine geology of Korean seas. Elsevier, Amsterdam, 313 p.
  6. Folk, R.L., 1968, Petrology of sedimentary rocks. Hemphill's, Austin, USA, 170 p.
  7. Folk, R.L. and Ward, W.C., 1957, A study in the significance of grain-size parameters. Journal of Sedimentary Petrology, 27, 3-27. https://doi.org/10.1306/74D70646-2B21-11D7-8648000102C1865D
  8. Hamilton, E.L., 1971, Predictions of in-situ acoustics and elastic properties of marine sediments. Geophysics, 36, 266-284. https://doi.org/10.1190/1.1440168
  9. Hamilton, E.L. 1980, Geoacoustic modeling of the sea floor. Journal of the Acoustical Society of America, 68, 1313-1340. https://doi.org/10.1121/1.385100
  10. Hamilton, E.L., 1987, Acoustic properties of sediments. In Lara-Saenz, A., Ranz-Guerra, C., and Carbo-Fite, C. (eds.), Acoustics and Ocean Bottom. Cosejo Superior de Investigaciones Cientificas, Madrid, Spain, 3-58.
  11. Hampton, L., 1974. Physics of sound in marine sediments. Plenum Press, New York, 569 p.
  12. Hovem, J.M., Richardson, M.D., and Stoll, R.D., 1990, Shear waves in marine sediments. Kluwer Academic Publications, Dordrecht, 593 p.
  13. Jackson, D.R. and Richardson, M.D., 2007, High-frequency seafloor acoustics. Springer, New York, USA, 616 p.
  14. Katsnelson, B., Petnikov, V., and Lynch, J., 2012, Fundamentals of shallow water acoustics. Springer, New York, USA, 540 p.
  15. KIGAM (Korea Institute of Geology, Mining and Materials), 2000, Study on Quaternary stratigraphy and environmental changes in Korean sea. KIGAM Research Report KR-00(B)-02, 678 p. (in Korean with English abstract)
  16. KIGAM (Korea Institute of Geology, Mining and Materials), 2023, https://data.kigam.re.kr/komm/geo/frame.do;jsessionid=A66A6D26D3647DBDC6D488FF3A4E014F# [Search date: July 28, 2023]
  17. Kwon, H., Choi, J.W., Ryang, W.H., Son, S.U., and Jung, S.K., 2019, Measurements of mid-frequency bottom-interacting signals and geoacoustic inversion in Jinhae Bay, southeast Korea. The Journal of the Acoustical Society of America, 145, 1205-1211. https://doi.org/10.1121/1.5092609
  18. Mackenzie, K.V., 1981, Nine-term equation for sound speed in the oceans. Journal of the Acoustical Society of America, 70, 807-812. https://doi.org/10.1121/1.386920
  19. Ryang, W.H., Jin, J.H., and Hahn, J., 2019, Geoacoustic model at the YSDP-105 long-core site in the mid-eastern Yellow Sea. The Journal of the Korean Earth Sciences Society, 40, 24-36. https://doi.org/10.5467/JKESS.2018.40.1.24
  20. Ryang, W.H. and Kim, S.P., 2022, A geoacoustic model at the YMGR-102 long-core site in the middle of the Yellow Sea. The Journal of the Korean Earth Sciences Society, 43, 520-531. https://doi.org/10.5467/JKESS.2022.43.4.520
  21. Stoll, R.D., 1989, Sediment acoustics. Springer-Verlag, Berlin, 155 p.
  22. Yoo, D.G., Kim, S.P., Chang, T.S., Kong, G.S., Kang, N.K., Kwon, Y.K., Nam, S.L., and Park, S.C., 2014, Late Quaternary inner shelf deposits in response to late Pleistocene-Holocene Sea level changes: Nakdong River, SE Korea. Quaternary International, 344, 156-169. https://doi.org/10.1016/j.quaint.2014.02.004
  23. Yoo, D.G., Lee, G.S., Kang, N.K., Yi, B.Y., Kong, G.S., Kim, G.Y., Chang, S.W., Yi, S., and Kim, J.C., 2017, Stratigraphy and depositional history of Nakdong River Delta. Journal of the Geological Society of Korea, 53, 619-630. (in Korean with English abstract) https://doi.org/10.14770/jgsk.2017.53.5.619