DOI QR코드

DOI QR Code

Analysis of Extreme Sea Surface Temperature along the Western Coastal area of Chungnam: Current Status and Future Projections

  • Byoung-Jun Lim (Department of Earth Science Education, Kongju National University) ;
  • You-Soon Chang (Department of Earth Science Education, Kongju National University)
  • Received : 2023.08.02
  • Accepted : 2023.08.21
  • Published : 2023.08.31

Abstract

Western coastal area of Chungnam, including Cheonsu Bay and Garorim Bay, has suffered from hot and cold extremes. In this study, the extreme sea surface temperature on the western coast of Chungnam was analyzed using the quantile regression method, which extracts the linear regression values in all quantiles. The regional MOHID (MOdelo HIDrodinâmico) model, with a high resolution on a 1/60° grid, was constructed to reproduce the extreme sea surface temperature. For future prediction, the SSP5-8.5 scenario data of the CMIP6 model were used to simulate sea surface temperature variability. Results showed that the extreme sea surface temperature of Cheonsu Bay in August 2017 was successfully simulated, and this extreme sea surface temperature had a significant negative correlation with the Pacific decadal variability index. As a result of future climate prediction, it was found that an average of 2.9℃ increased during the simulation period of 86 years in the Chungnam west coast and there was a seasonal difference (3.2℃ in summer, 2.4℃ in winter). These seasonal differences indicate an increase in the annual temperature range, suggesting that extreme events may occur more frequently in the future.

Keywords

Acknowledgement

This research was supported by National Research Foundation of Korea (2019R1A2C1008490) and Korea Institute of Marine Science & Technology Promotion (KIMST) funded by the Ministry of Oceans and Fisheries (KIMST-20220033)

References

  1. Barbosa, S. M., M. G. Scotto, and A. M. Alonso, 2011, Summarising changes in air temperature over Central Europe by quantile regression and clustering. Nat. Hazards Earth Syst. Sci., 11(12), 3227-3233. https://doi.org/10.5194/nhess-11-3227-2011
  2. Collins, M., Sutherland, M., Bouwer, L., Cheong, S. M., Frolicher, T., DesCombes, H. J. and Timmermans, M. L. 2019, Extremes, abrupt changes and managing risk. Available online: http://ecite.utas.edu.au/148967/ (accessed on 10 December 2019).
  3. Hobday, A.J., Alexander, L.V., Perkins, S.E., Smale, D.A., Straub, S.C., Oliver, E.C., Benthuysen, J.A., Burrows, M.T., Donat, M.G., Feng, M. and Holbrook, N.J., 2016, A hierarchical approach to defining marine heatwaves. Prog. Oceanogr., 141: 227-238. https://doi.org/10.1016/j.pocean.2015.12.014
  4. IPCC, 2021: Climate Change 2021: The Physical Science Basis. Contribution of Working Group I to the Sixth Assessment Report of the Intergovernmental Panel on Climate Change [Masson-Delmotte, V., P. Zhai, A. Pirani, S.L. Connors, C. Pean, S. Berger, N. Caud, Y. Chen, L. Goldfarb, M.I. Gomis, M. Huang, K. Leitzell, E. Lonnoy, J.B.R. Matthews, T.K. Maycock, T. Waterfield, O. Yelekci, R. Yu, and B. Zhou (eds.)]. Cambridge University Press, Cambridge, United Kingdom and New York, NY, USA, In press, doi: 10.1017/9781009157896.
  5. Kim, T. H. and Yang, C. S., 2019, Preliminary Study on Detection of Marine Heat Waves using Satellite-based Sea Surface Temperature Anomaly in 2017-2018. J. Korean Soc. Mar, 25(6), 678-686. https://doi.org/10.7837/kosomes.2019.25.6.678
  6. Koenker, R. and F. Schorfheide, 1994, Quantile spline models for global temperature change. Clim. Change, 28(4): 395-404. https://doi.org/10.1007/BF01104081
  7. Koenker, R. and K.F. Hallock, 2001, Quantile regression, J. Econ. Perspect., 15(4): 143-156. https://doi.org/10.1257/jep.15.4.143
  8. Lee, K., H.J. Baek, C.H. Cho, 2012, Analysis of changes in extreme precipitation in Seoul using quantile regression, J. Clim. Res., 7(3): 199-209.
  9. Lee, D. C., Won, K. M., Park, M. A., Choi, H. S. and Jung, S. H., 2018, An Analysis of Mass Mortalities in Aquaculture Fish Farms on the Southern Coast in Korea; Korea Maritime Institute: Busan. Korea, 67, 1-16.
  10. Lee, J.H., Sung, H.M., Shim, S.B. and Boo, K.O., 2020, International Data Node System for CMIP6 Climate Change Projections, J. Clim. Res., 11(4): 247-257 https://doi.org/10.15531/KSCCR.2020.11.4.247
  11. Lim, B. J. and Chang, Y. S., 2018, Analysis of Long-term Linear Trends of the Sea Surface Height Along the Korean Coast based on Quantile Regression, The Sea, 23(2): 63-75. https://doi.org/10.7850/JKSO.2018.23.2.063
  12. Lima, F. P. and Wethey, D. S., 2012, Three decades of high-resolution coastal sea surface temperatures reveal more than warming. Nat. Commun., 3(1), 1-13. https://doi.org/10.1038/ncomms1713
  13. Mantua, N.J., Hare, S.R., Zhang, Y., Wallace, J.M. and Francis, R.C., 1997, A Pacific interdecadal climate oscillation with impacts on salmon production. Bull. Amer. Meteor. Soc., 78, 1069-1079. https://doi.org/10.1175/1520-0477(1997)078<1069:APICOW>2.0.CO;2
  14. Mills, K. E., Pershing, A. J., Brown, C. J., Chen, Y., Chiang, F. S., Holland, D. S. and Wahle, R. A., 2013, Fisheries management in a changing climate: lessons from the 2012 ocean heat wave in the Northwest Atlantic. Oceanogr., 26(2), 191-195. https://doi.org/10.5670/oceanog.2013.27
  15. Smale, D. A. and Wernberg, T., 2013, Extreme climatic event drives range contraction of a habitat-forming species. Proc. Royal Soc. B P ROY SOC B-BIOL SCI, 280(1754), 20122829.
  16. Thompson, D.W.J. and Wallace, J.M., 1998, The Arctic Oscillation signature in the wintertime geopotential height and temperature fields. Geophys. Res. Lett., 25, 1297-1300. https://doi.org/10.1029/98GL00950
  17. Wernberg, T., Smale, D. A., Tuya, F., Thomsen, M. S., Langlois, T. J., De Bettignies, T. and Rousseaux, C. S., 2013, An extreme climatic event alters marine ecosystem structure in a global biodiversity hotspot. Nat. Clim. Change, 3(1), 78-82. https://doi.org/10.1038/nclimate1627