DOI QR코드

DOI QR Code

Amelioration of colitis progression by ginseng-derived exosome-like nanoparticles through suppression of inflammatory cytokines

  • Jisu Kim (Department of Pharmaceutics, School of Pharmacy, Fudan University & Key Laboratory of Smart Drug Delivery, Ministry of Education) ;
  • Shuya Zhang (Department of Pharmaceutics, School of Pharmacy, Fudan University & Key Laboratory of Smart Drug Delivery, Ministry of Education) ;
  • Ying Zhu (Department of Integrative Oncology, Fudan University Shanghai Cancer Center) ;
  • Ruirui Wang (Shanghai Innovation Center of TCM Health Service, Shanghai University of Traditional Chinese Medicine) ;
  • Jianxin Wang (Department of Pharmaceutics, School of Pharmacy, Fudan University & Key Laboratory of Smart Drug Delivery, Ministry of Education)
  • Received : 2022.07.15
  • Accepted : 2023.01.05
  • Published : 2023.09.01

Abstract

Background: Damage to the healthy intestinal epithelial layer and regulation of the intestinal immune system, closely interrelated, are considered pivotal parts of the curative treatment for inflammatory bowel disease (IBD). Plant-based diets and phytochemicals can support the immune microenvironment in the intestinal epithelial barrier for a balanced immune system by improving the intestinal microecological balance and may have therapeutic potential in colitis. However, there have been only a few reports on the therapeutic potential of plant-derived exosome-like nanoparticles (PENs) and the underlying mechanism in colitis. This study aimed to assess the therapeutic effect of PENs from Panax ginseng, ginseng-derived exosome-like nanoparticles (GENs), in a mouse model of IBD, with a focus on the intestinal immune microenvironment. Method: To evaluate the anti-inflammatory effect of GENs on acute colitis, we treated GENs in Caco2 and lipopolysaccharide (LPS) -induced RAW 264.7 macrophages and analyzed the gene expression of proinflammatory cytokines and anti-inflammatory cytokines such as TNF-α, IL-6, and IL-10 by real-time PCR (RT-PCR). Furthermore, we further examined bacterial DNA from feces and determined the alteration of gut microbiota composition in DSS-induced colitis mice after administration of GENs through 16S rRNA gene sequencing analysis. Result: GENs with low toxicity showed a long-lasting intestinal retention effect for 48 h, which could lead to effective suppression of pro-inflammatory cytokines such as TNF-α and IL-6 production through inhibition of NF-κB in DSS-induced colitis. As a result, it showed longer colon length and suppressed thickening of the colon wall in the mice treated with GENs. Due to the amelioration of the progression of DSS-induced colitis with GENs treatment, the prolonged survival rate was observed for 17 days compared to 9 days in the PBS-treated group. In the gut microbiota analysis, the ratio of Firmicutes/Bacteroidota was decreased, which means GENs have therapeutic effectiveness against IBD. Ingesting GENs would be expected to slow colitis progression, strengthen the gut microbiota, and maintain gut homeostasis by preventing bacterial dysbiosis. Conclusion: GENs have a therapeutic effect on colitis through modulation of the intestinal microbiota and immune microenvironment. GENs not only ameliorate the inflammation in the damaged intestine by downregulating pro-inflammatory cytokines but also help balance the microbiota on the intestinal barrier and thereby improve the digestive system.

Keywords

Acknowledgement

This work was supported by the National Natural Science Foundation of China (No. 82074277 and 81773911), and the Development Project of Shanghai Peak Disciplines-Integrated Medicine (No. 20180101).

References

  1. Inflammatory bowel disease (IBD) in the United States. Centers for Disease Control and Prevention. 
  2. Dahlhamer Epz James M, Ward Brian W, Wheaton Anne G, Croft Janet B. Prevalence of inflammatory bowel disease among adults aged ≥18 years - United States, 2015. MMWR Morb Mortal Wkly Rep 2016;65:1166-9.  https://doi.org/10.15585/mmwr.mm6542a3
  3. Renna S, Cottone M, Orlando A. Optimization of the treatment with immunosuppressants and biologics in inflammatory bowel disease. World J Gastroenterol 2014;20:9675-90.  https://doi.org/10.3748/wjg.v20.i29.9675
  4. Peyrin-Biroulet L. Anti-TNF therapy in inflammatory bowel diseases: a huge review. Minerva Gastroenterol Dietol 2010;56:233-43. 
  5. Sicilia B, Arias L, Hontoria G, Garcia N, Badia E, Gomollon F. Are steroids still useful in immunosuppressed patients with inflammatory bowel disease? A retrospective, population-based study. Front Med (Lausanne) 2021;8:651685. 
  6. D'Haens GR, van Deventer S. 25 years of anti-TNF treatment for inflammatory bowel disease: lessons from the past and a look to the future. Gut 2021;70:1396-405.  https://doi.org/10.1136/gutjnl-2019-320022
  7. Mishra R, Dhawan P, Srivastava AS, Singh AB. Inflammatory bowel disease: therapeutic limitations and prospective of the stem cell therapy. World J Stem Cells 2020;12:1050-66.  https://doi.org/10.4252/wjsc.v12.i10.1050
  8. Al-Bawardy B, Shivashankar R, Proctor DD. Novel and emerging therapies for inflammatory bowel disease. Front Pharmacol 2021;12:651415. 
  9. Sandra Goncalves EM, Andrade Paula B, Valentao Patricia, Romano Anabela. Effect of in vitro gastrointestinal digestion on the total phenolic contents and antioxidant activity of wild Mediterranean edible plant extracts. European Food Research and Technology 2018;245:753-62.  https://doi.org/10.1007/s00217-018-3197-y
  10. Deng Z, Rong Y, Teng Y, Mu J, Zhuang X, Tseng M, et al. Broccoli-derived nanoparticle inhibits mouse colitis by activating dendritic cell AMP-activated protein kinase. Mol Ther 2017;25:1641-54.  https://doi.org/10.1016/j.ymthe.2017.01.025
  11. Teng Y, Ren Y, Sayed M, Hu X, Lei C, Kumar A, et al. Plant-derived exosomal MicroRNAs shape the gut microbiota. Cell Host Microbe 2018;24:637-652 e8. 
  12. Kim DH. Gut microbiota-mediated pharmacokinetics of ginseng saponins. J Ginseng Res 2018;42:255-63.  https://doi.org/10.1016/j.jgr.2017.04.011
  13. Kim JH, Yi YS, Kim MY, Cho JY. Role of ginsenosides, the main active components of Panax ginseng, in inflammatory responses and diseases. J Ginseng Res 2017;41:435-43.  https://doi.org/10.1016/j.jgr.2016.08.004
  14. Li L, Wang Y, Guo R, Li S, Ni J, Gao S, et al. Ginsenoside Rg3-loaded, reactive oxygen species-responsive polymeric nanoparticles for alleviating myocardial ischemia-reperfusion injury. J Control Release 2020;317:259-72.  https://doi.org/10.1016/j.jconrel.2019.11.032
  15. Ni J, Liu Z, Jiang M, Li L, Deng J, Wang X, et al. Ginsenoside Rg3 ameliorates myocardial glucose metabolism and insulin resistance via activating the AMPK signaling pathway. J Ginseng Res 2022;46:235-47.  https://doi.org/10.1016/j.jgr.2021.06.001
  16. Dong JY, Xia KJ, Liang W, Liu LL, Yang F, Fang XS, et al. Ginsenoside Rb1 alleviates colitis in mice via activation of endoplasmic reticulum-resident E3 ubiquitin ligase Hrd1 signaling pathway. Acta Pharmacol Sin 2021;42:1461-71.  https://doi.org/10.1038/s41401-020-00561-9
  17. Wang CZ, Yu C, Wen XD, Chen L, Zhang CF, Calway T, et al. American ginseng attenuates colitis-associated colon carcinogenesis in mice: impact on gut microbiota and metabolomics. Cancer Prev Res (Phila) 2016;9:803-11.  https://doi.org/10.1158/1940-6207.CAPR-15-0372
  18. Hong J, Gwon D, Jang CY. Ginsenoside Rg1 suppresses cancer cell proliferation through perturbing mitotic progression. J Ginseng Res 2022;46:481-8.  https://doi.org/10.1016/j.jgr.2021.11.004
  19. Ahuja A, Kim JH, Kim JH, Yi YS, Cho JY. Functional role of ginseng-derived compounds in cancer. J Ginseng Res 2018;42:248-54.  https://doi.org/10.1016/j.jgr.2017.04.009
  20. Dai D, Zhang CF, Williams S, Yuan CS, Wang CZ. Ginseng on cancer: potential role in modulating inflammation-mediated angiogenesis. Am J Chin Med 2017;45:13-22.  https://doi.org/10.1142/S0192415X17500021
  21. Hou W, Wang Y, Zheng P, Cui R. Effects of ginseng on neurological disorders. Front Cell Neurosci 2020;14:55. 
  22. Ong WY, Farooqui T, Koh HL, Farooqui AA, Ling EA. Protective effects of ginseng on neurological disorders. Front Aging Neurosci 2015;7:129. 
  23. Fuhrer A, Sprenger N, Kurakevich E, Borsig L, Chassard C, Hennet T. Milk sialyllactose influences colitis in mice through selective intestinal bacterial colonization. J Exp Med 2010;207:2843-54.  https://doi.org/10.1084/jem.20101098
  24. Kruger NJ. The Bradford method for protein quantitation. Methods Mol Biol 1994;32:9-15.  https://doi.org/10.1385/1-59259-169-8:15
  25. Cao Y, Chen J, Ren G, Zhang Y, Tan X, Yang L. Punicalagin prevents inflammation in LPS-induced RAW264.7 macrophages by inhibiting FoxO3a/autophagy signaling pathway. Nutrients 2019;11. 
  26. Kim JR, Oh DR, Cha MH, Pyo BS, Rhee JH, Choy HE, et al. Protective effect of polygoni cuspidati radix and emodin on Vibrio vulnificus cytotoxicity and infection. J Microbiol 2008;46:737-43.  https://doi.org/10.1007/s12275-008-0232-x
  27. Endale M, Park SC, Kim S, Kim SH, Yang Y, Cho JY, et al. Quercetin disrupts tyrosine-phosphorylated phosphatidylinositol 3-kinase and myeloid differentiation factor-88 association, and inhibits MAPK/AP-1 and IKK/NF-kappaB-induced inflammatory mediators production in RAW 264.7 cells. Immunobiology 2013;218:1452-67.  https://doi.org/10.1016/j.imbio.2013.04.019
  28. Lee YY, Kim SD, Park SC, Rhee MH. Panax ginseng: inflammation, platelet aggregation, thrombus formation, and atherosclerosis crosstalk. J Ginseng Res 2022;46:54-61.  https://doi.org/10.1016/j.jgr.2021.09.003
  29. Yang G, Li J, Peng Y, Shen B, Li Y, Liu L, et al. Ginsenoside Rb1 attenuates methamphetamine (METH)-induced neurotoxicity through the NR2B/ERK/CREB/BDNF signalings in vitro and in vivo models. J Ginseng Res 2022;46:426-34.  https://doi.org/10.1016/j.jgr.2021.07.005
  30. Kim KH, Lee D, Lee HL, Kim CE, Jung K, Kang KS. Beneficial effects of Panax ginseng for the treatment and prevention of neurodegenerative diseases: past findings and future directions. J Ginseng Res 2018;42:239-47.  https://doi.org/10.1016/j.jgr.2017.03.011
  31. Wan Y, Wang J, Xu JF, Tang F, Chen L, Tan YZ, et al. Panax ginseng and its ginsenosides: potential candidates for the prevention and treatment of chemotherapy-induced side effects. J Ginseng Res 2021;45:617-30.  https://doi.org/10.1016/j.jgr.2021.03.001
  32. Tung NH, Song GY, Nhiem NX, Ding Y, Tai BH, Jin LG, et al. Dammarane-type saponins from the flower buds of Panax ginseng and their intracellular radical scavenging capacity. J Agric Food Chem 2010;58:868-74.  https://doi.org/10.1021/jf903334g
  33. Ahn S, Siddiqi MH, Aceituno VC, Simu SY, Yang DC. Suppression of MAPKs/NF-kappaB activation induces intestinal anti-inflammatory action of ginsenoside Rf in HT-29 and RAW264.7 cells. Immunol Invest 2016;45:439-49.  https://doi.org/10.3109/08820139.2016.1168830
  34. Cooper HS, Murthy SN, Shah RS, Sedergran DJ. Clinicopathologic study of dextran sulfate sodium experimental murine colitis. Lab Invest 1993;69:238-49. 
  35. Stojanov S, Berlec A, Strukelj B. The influence of probiotics on the firmicutes/bacteroidetes ratio in the treatment of obesity and inflammatory bowel disease. Microorganisms 2020;8. 
  36. Papamichael K, Konstantopoulos P, Mantzaris GJ. Helicobacter pylori infection and inflammatory bowel disease: is there a link? World J Gastroenterol 2014;20:6374-85.  https://doi.org/10.3748/wjg.v20.i21.6374
  37. Henke MT, Kenny DJ, Cassilly CD, Vlamakis H, Xavier RJ, Clardy J. Ruminococcus gnavus, a member of the human gut microbiome associated with Crohn's disease, produces an inflammatory polysaccharide. Proc Natl Acad Sci U S A 2019;116:12672-7.  https://doi.org/10.1073/pnas.1904099116
  38. Peran L, Camuesco D, Comalada M, Nieto A, Concha A, Diaz-Ropero MP, et al. Preventative effects of a probiotic, Lactobacillus salivarius ssp. salivarius, in the TNBS model of rat colitis. World J Gastroenterol 2005;11:5185-92.  https://doi.org/10.1097/01.MIB.0000160808.30988.d9
  39. Dziarski R, Park SY, Kashyap DR, Dowd SE, Gupta D. Pglyrp-regulated gut microflora prevotella falsenii, parabacteroides distasonis and Bacteroides eggerthii enhance and Alistipes finegoldii attenuates colitis in mice. PLoS One 2016;11:e0146162. 
  40. Zu M, Xie D, Canup BSB, Chen N, Wang Y, Sun R, et al. 'Green' nanotherapeutics from tea leaves for orally targeted prevention and alleviation of colon diseases. Biomaterials 2021;279:121178. 
  41. Zhuang X, Deng ZB, Mu J, Zhang L, Yan J, Miller D, et al. Ginger-derived nanoparticles protect against alcohol-induced liver damage. J Extracell Vesicles 2015;4:28713. 
  42. Li Z, Wang H, Yin H, Bennett C, Zhang HG, Guo P. Arrowtail RNA for ligand display on ginger exosome-like nanovesicles to systemic deliver siRNA for cancer suppression. Sci Rep 2018;8:14644. 
  43. Mu J, Zhuang X, Wang Q, Jiang H, Deng ZB, Wang B, et al. Interspecies communication between plant and mouse gut host cells through edible plant derived exosome-like nanoparticles. Mol Nutr Food Res 2014;58:1561-73.  https://doi.org/10.1002/mnfr.201300729
  44. Wang Q, Zhuang X, Mu J, Deng ZB, Jiang H, Zhang L, et al. Delivery of therapeutic agents by nanoparticles made of grapefruit-derived lipids. Nat Commun 2013;4:1867. 
  45. Xu XH, Yuan TJ, Dad HA, Shi MY, Huang YY, Jiang ZH, et al. Plant exosomes as novel nanoplatforms for MicroRNA transfer stimulate neural differentiation of stem cells in vitro and in vivo. Nano Lett 2021;21:8151-9.  https://doi.org/10.1021/acs.nanolett.1c02530
  46. Liu T, Zhang L, Joo D, Sun SC. NF-kappaB signaling in inflammation. Signal Transduct Target Ther 2017;2. 
  47. Karunaweera N, Raju R, Gyengesi E, Munch G. Plant polyphenols as inhibitors of NF-kappaB induced cytokine production-a potential anti-inflammatory treatment for Alzheimer's disease? Front Mol Neurosci 2015;8:24. 
  48. Driessler F, Venstrom K, Sabat R, Asadullah K, Schottelius AJ. Molecular mechanisms of interleukin-10-mediated inhibition of NF-kappaB activity: a role for p50. Clin Exp Immunol 2004;135:64-73.  https://doi.org/10.1111/j.1365-2249.2004.02342.x
  49. Hovsepian E, Penas F, Siffo S, Mirkin GA, Goren NB. IL-10 inhibits the NFkappaB and ERK/MAPK-mediated production of pro-inflammatory mediators by up-regulation of SOCS-3 in Trypanosoma cruzi-infected cardiomyocytes. PLoS One 2013;8:e79445. 
  50. Dorrington MG, Fraser IDC. NF-kappaB signaling in macrophages: dynamics, crosstalk, and signal integration. Front Immunol 2019;10:705. 
  51. Szczepanik AM, Funes S, Petko W, Ringheim GE. IL-4, IL-10 and IL-13 modulate A beta(1-42)-induced cytokine and chemokine production in primary murine microglia and a human monocyte cell line. J Neuroimmunol 2001;113:49-62.  https://doi.org/10.1016/S0165-5728(00)00404-5
  52. Guillot-Sestier MV, Doty KR, Gate D, Rodriguez Jr J, Leung BP, Rezai-Zadeh K, et al. Il10 deficiency rebalances innate immunity to mitigate Alzheimer-like pathology. Neuron 2015;85:534-48.  https://doi.org/10.1016/j.neuron.2014.12.068
  53. Zheng D, Liwinski T, Elinav E. Interaction between microbiota and immunity in health and disease. Cell Res 2020;30:492-506.  https://doi.org/10.1038/s41422-020-0332-7
  54. Souza DG, Vieira AT, Soares AC, Pinho V, Nicoli JR, Vieira LQ, et al. The essential role of the intestinal microbiota in facilitating acute inflammatory responses. J Immunol 2004;173:4137-46.  https://doi.org/10.4049/jimmunol.173.6.4137
  55. Sarubbo F, Cavallucci V, Pani G. The influence of gut microbiota on neurogenesis: evidence and hopes. Cells 2022:11. 
  56. Zhang YJ, Li S, Gan RY, Zhou T, Xu DP, Li HB. Impacts of gut bacteria on human health and diseases. Int J Mol Sci 2015;16:7493-519. https://doi.org/10.3390/ijms16047493