DOI QR코드

DOI QR Code

현직 수학 교사들의 수학적 모델링 과제에 대한 인식과 과제 개발 역량: 현실성을 중심으로

In-service teacher's perception on the mathematical modeling tasks and competency for designing the mathematical modeling tasks: Focused on reality

  • 투고 : 2023.07.14
  • 심사 : 2023.08.28
  • 발행 : 2023.08.31

초록

인공지능과 빅데이터를 활용하여 실세계의 다양하고 복잡한 문제를 해결해야 하는 시대가 도래함에 따라 수학적 접근을 통하여 실제적인 문제를 해결할 수 있는 문제해결역량이 요구되고 있다. 실제 2015 개정 수학과 교육과정과 2022개정 수학과 교육과정은 수학적 모델링을 실세계의 문제를 해결하는 활동과 역량으로써 강조하고 있다. 하지만 국내외 교과서에 제시되는 실세계 문제는 실제 상황에서 거의 일어나지 않은 인위적인 문제의 비율이 높은 실정이다. 이에 따라 국내외에서는 수학적 모델링 과제의 특징 중 현실성에 주목하며 학생들의 일상을 반영하고 있는 진정성 있는 과제의 필요성을 제안하고 있다. 하지만 기존의 연구들은 현실성에 대한 이론적인 제안에 초점이 맞춰져 있으며, 현실성에 대한 교사의 인식과 현실성을 과제에 반영하는 교사의 역량을 분석한 연구는 미흡하다. 이에 따라 본 연구는 수학적 모델링을 위한 과제의 특징 중 현실성에 대한 현직 수학 교사의 인식과 현실성을 과제에 반영하는 과제 개발 역량을 분석하는 데에 목적을 두었다. 먼저 이를 위해 선행연구를 분석하여 현실성을 위한 5가지 조건을 정립하였다. 이후 수학적 모델링을 주제로 교사 직무 연수를 시행하였으며, 이에 참여한 교사 41명을 대상으로 사전-사후 조사를 실시하였다. 이때 사전-사후 조사에서는 현실성이 반영되지 않은 과제를 제시하였으며, 주어진 과제가 현실성을 반영하고 있는지를 판단하고, 그 판단의 근거를 현실성을 위한 5가지 조건 중에 선택할 수 있도록 하였다. 이후 사전-사후 조사에서 현직 수학 교사들이 선택한 객관식 선택지를 코딩하여 빈도분석을 시행하였으며, 사전-사후로 빈도를 비교하여 현직 수학 교사들의 현실성에 대한 인식변화를 확인하였다. 또한 현직 수학 교사들이 제작한 수학적 모델링 과제를 현실성의 관점에서 평가하여 교사들의 과제 개발 역량을 확인하였다. 그 결과, 현직 수학 교사들이 과제에 대한 현실성을 판단할 때, '수학 밖의 실생활 소재를 사용' 이라는 현실성에 대한 단편적인 조건만을 고려하는 미흡한 인식에서 현실성의 5가지 조건을 다각도로 고려하는 인식으로 변화됨을 보여주었다. 특별히 사전-사후 조사에서 현실성에 대한 판단이 뒤바뀐 현직 수학 교사들을 중심으로 판단의 근거들을 확인한 결과, 현실성을 위한 5가지 조건들 중에 특정 조건을 사전 조사에서는 현실성의 기준으로 고려하지 않았다가 사후 조사에서는 현실성의 기준으로 고려하게 된 현직 수학 교사들의 인식의 변화를 확인할 수 있었다. 더불어, 현직 수학 교사들이 수학적 모델링을 위해 개발한 과제를 평가한 결과, 현직 수학 교사들은 현실성을 수학적 모델링 과제에 반영하는 역량을 보였다. 다만 현실성의 5가지 조건 중 '학생들의 일상에서 일어날 수 있는 상황', '문제 해결의 필요성', '실세계 현상으로서의 결론 요구'에 대해서는 상대적으로 낮은 반영 비율을 보였다. 또한 사후 조사에서 과제의 현실성에 대해 올바른 판단을 할 수 있었던 교사 집단보다 올바른 판단을 할 수 없었던 교사 집단에서 과제 개발 역량이 낮은 교사들의 비율이 좀 더 많이 나타났다. 이러한 연구 결과를 바탕으로 본 연구는 수학 교사들이 수학적 모델링을 수업에 활용할 수 있도록 하기 위한 교사 교육의 방향성을 제안하였다.

As the era of solving various and complex problems in the real world using artificial intelligence and big data appears, problem-solving competencies that can solve realistic problems through a mathematical approach are required. In fact, the 2015 revised mathematics curriculum and the 2022 revised mathematics curriculum emphasize mathematical modeling as an activity and competency to solve real-world problems. However, the real-world problems presented in domestic and international textbooks have a high proportion of artificial problems that rarely occur in real-world. Accordingly, domestic and international countries are paying attention to the reality of mathematical modeling tasks and suggesting the need for authentic tasks that reflect students' daily lives. However, not only did previous studies focus on theoretical proposals for reality, but studies analyzing teachers' perceptions of reality and their competency to reflect reality in the task are insufficient. Accordingly, this study aims to analyze in-service mathematics teachers' perception of reality among the characteristics of tasks for mathematical modeling and the in-service mathematics teachers' competency for designing the mathematical modeling tasks. First of all, five criteria for satisfying the reality were established by analyzing literatures. Afterward, teacher training was conducted under the theme of mathematical modeling. Pre- and post-surveys for 41 in-service mathematics teachers who participated in the teacher training was conducted to confirm changes in perception of reality. The pre- and post- surveys provided a task that did not reflect reality, and in-service mathematics teachers determined whether the task given in surveys reflected reality and selected one reason for the judgment among five criteria for reality. Afterwards, frequency analysis was conducted by coding the results of the survey answered by in-service mathematics teachers in the pre- and post- survey, and frequencies were compared to confirm in-service mathematics teachers' perception changes on reality. In addition, the mathematical modeling tasks designed by in-service teachers were evaluated with the criteria for reality to confirm the teachers' competency for designing mathematical modeling tasks reflecting the reality. As a result, it was shown that in-service mathematics teachers changed from insufficient perception that only considers fragmentary criterion for reality to perceptions that consider all the five criteria of reality. In particular, as a result of analyzing the basis for judgment among in-service mathematics teachers whose judgment on reality was reversed in the pre- and post-survey, changes in the perception of in-service mathematics teachers was confirmed, who did not consider certain criteria as a criterion for reality in the pre-survey, but considered them as a criterion for reality in the post-survey. In addition, as a result of evaluating the tasks designed by in-service mathematics teachers for mathematical modeling, in-service mathematics teachers showed the competency to reflect reality in their tasks. However, among the five criteria for reality, the criterion for "situations that can occur in students' daily lives," "need to solve the task," and "require conclusions in a real-world situation" were relatively less reflected. In addition, it was found that the proportion of teachers with low task development competencies was higher in the teacher group who could not make the right judgment than in the teacher group who could make the right judgment on the reality of the task. Based on the results of these studies, this study provides implications for teacher education to enable mathematics teachers to apply mathematical modeling lesson in their classes.

키워드

참고문헌

  1. Aguirre, J. M., Turner, E. E., Bartell, T. G., Kalinec-Craig, C., Foote, M. Q., Roth McDuffie, A., & Drake, C. (2013). Making connections in practice: How prospective elementary teachers connect to children's mathematical thinking and community funds of knowledge in mathematics instruction. Journal of Teacher Education, 64(2), 178-192. https://doi.org/10.1177/0022487112466900
  2. An, I. K., & Oh, Y. Y. (2018). An analysis of mathematical modeling process and mathematical reasoning ability by group organization method. Journal of Elementary Mathematics Education in Korea, 22(4), 497-516.
  3. An, J. S. (2012). Impact on improve Student's learning ability in instruction using mathematical modeling teaching materials of function units. Journal of the Korean School Mathematics Society, 15(4), 747-770.
  4. Armanto, D. (2002). Teaching multiplication and division realistically in Indonesian primary schools: A prototype of local instructional theory (p. 309). University of Twente [Host].
  5. Berta, B., & Britta, E. J. (2020). Impact of theoretical perspectives on the design of mathematical modeling tasks. Avances de Investigacion en Educacion Matematica, 20, 98-113. https://doi.org/10.35763/aiem.v0i17.317
  6. Bonnotto, C. (2007). How to replace word problems with activities of realistic mathematical modelling. In W. Blum, P. L. Galbraith, H.-W. Henn, & M. Niss (Eds.), Modelling and applications in mathematics education: The 14th ICMI study (pp. 185-192). Springer.
  7. Choi, H. S. (2022). A case study of lesson design based on mathematical modeling of pre-service mathematics teachers. Communications of Mathematical Education, 36(1), 59-72. https://doi.org/10.7468/jksmee.2022.36.1.59
  8. Choi, J. S. (2017). Prospective teachers' perception of mathematical modeling in elementary class. Journal of Educational Research in Mathematics, 27(2), 313-328.
  9. Chong, Y. O. (1999). A study of realistic mathematics education - Focusing on the learning of algorithms in primary school -. Journal of Educational Research in Mathematics, 9(1), 81-109.
  10. Chu, S. J., & Kim, Y. H. (2009). A study on the function education of middle school using the technical instruments. Journal of the Korean School Mathematics Society, 12(3), 189-209.
  11. Cirillo, M., Bartell, T. G., & Wager, A. A. (2016). Teaching mathematics for social justice through mathematical modeling. In C. R. Hirsch & A. Roth McDuffie (Eds.), Annual perspectives in mathematics education 2016: Mathematical modeling and modeling mathematics (pp. 87-96) NCTM.
  12. De Lange, J. (1987). Mathematics, Insight, and Meaning. OW & OC.
  13. Doerr, H. M., & English, L. D. (2003). A modeling perspective on students' mathematical reasoning about data. Journal for research in mathematics education, 34(2), 110-136. https://doi.org/10.2307/30034902
  14. Dogan, M. F. (2020). Evaluating pre-service teachers' design of mathematical modeling tasks. International Journal of Innovation in Science and Mathematics Education, 28(1), 44-59. https://doi.org/10.30722/IJISME.28.01.004
  15. Erbas, A. K., Kertil, M., Cetinkaya, B., Cakiroglu, E., Alacaci, C., & Bas, S. (2014). Mathematical modeling in mathematics education: basic concepts and approaches. Educational Sciences: Theory and Practice, 14(4), 1621-1627. https://doi.org/10.12738/estp.2014.4.2039
  16. Fauzan, A. (2002). Applying Realistic Mathematics Education (RME) in teaching geometry in Indonesian primary schools. University Of Twente [Host].
  17. Freudenthal, H. (1968) Why to teach mathematics as to be useful? Educational Studies in Mathematics, 1(1), 3-8. https://doi.org/10.1007/BF00426224
  18. Freudenthal, H. (1991). Revisiting Mathematics Education: China Lectures. Acad.
  19. Fulton, E. W., Wickstrom, M. H., Carlson, M. A., & Burroughs, E. A. (2019). Teachers as learners: Engaging communities of learners in mathematical modelling through professional development. In G. A. Stillman & J. P. Brown (Eds.), Lines of inquiry in mathematical modelling research in education, ICME-13 monographs (pp. 125-142). Springer.
  20. Galbraith, P. (2007). Dreaming a 'possible dream': More windmills to conquer. In Mathematical Modelling (pp. 44-62). Woodhead Publishing. https://doi.org/10.1533/9780857099419.2.43
  21. Garrett, L., Huang, L., & Charleton, M. C. (2016). A framework for authenticity in the mathematics and statistics classroom. The Mathematics Educator, 25(1), 32-55.
  22. Gravemeijer, K. P. E. (1994). Developing realistic mathematics education. Freudenthal Institute.
  23. Hansen, R., & Hana, G. M. (2015). Problem posing from a modelling perspective. Mathematical problem posing: From research to effective practice, 35-46. https://doi.org/10.1007/978-1-4614-6258-3_2
  24. Hwang, H. J. (2007). A study of understanding mathematical modeling. School Mathematics, 9(1), 65-97.
  25. Hwang, H. J., & Huh, N. (2016). The study on the integrated thinking ability in problem based learning program using historical materials in mathematics. Communications of Mathematical Education, 30(2), 161-178. https://doi.org/10.7468/jksmee.2016.30.2.161
  26. Hwang, H. J., & Min, A. R. (2018). An investigation on the understanding of the mathematical modeling based on the results of domestic articles since 2007. Communications of Mathematical Education, 32(2), 225-244. https://doi.org/10.7468/jksmee.2018.32.2.225
  27. Jung, H. Y., & Lee, K. H. (2021). Promoting in-service teacher's mathematical modeling teaching competencies by implementing and modifying mathematical modeling tasks. Journal of Educational Research in Mathematics, 31(1), 35-62. https://doi.org/10.29275/jerm.2021.02.31.1.35
  28. Jung, H. Y., Lee, K. H., & Jung, J. H. (2020). Analyzing real world tasks of 6th grade textbook from a mathematical modeling perspective: Focused on the curriculum for revised 2011 and 2015. Journal of Learner-Centered Curriculum and Instruction, 20(18), 1313-1340. https://doi.org/10.22251/jlcci.2020.20.18.1313
  29. Kim, C. S. (2013). A study on meaning in solving of mathematical modeling problem. Journal of the Korean School Mathematics Society, 16(3), 561-582.
  30. Kim, I. K. (2012). Comparison and analysis among mathematical modeling, mathematization, and problem solving. The Korean Journal for History of Mathematics, 25(2), 71-95.
  31. Kim, M. K., Hong, J. Y., & Kim, H. W. (2010). A study on development of problem contexts for an application to mathematical modeling. The Mathematical Education, 49(3), 313-328.
  32. Kim, S. J., & Moon, J. H. (2006). A study on the application of context problems and preference for context problems types. Journal of the Korean School Mathematics Society, 9(2), 141-161.
  33. Kim, S. M. (2021). Analyzing tasks in the statistics area of Korean and Singaporean textbooks from the perspective of mathematical modeling: Focusing on 7th grade. Journal of the Korean School Mathematics Society, 24(3), 283-308. https://doi.org/10.30807/ksms.2021.24.3.003
  34. Kim, Y. (2020). Teacher education for mathematical modeling: A case study. East Asian Mathematical Journal, 36(2), 173-201. https://doi.org/10.7858/eamj.2020.014
  35. Kim, Y. S. (2022). Changes in Perceptions of Elementary School Preservice Teachers about Mathematical Modeling. Education of Primary School Mathematics, 25(1), 101-123. http://doi.org/10.7468/jksmec.2022.25.1.101
  36. Korea Curriculum Evaluation Institution (2011). 2011 International academic achievement assessment study (PISA, TIMSS): PISA 2012 preliminary test implementation report.
  37. Kwon, K. S., & Park, B. H. (1997). A study on the utilization of mathematical modeling in high school. The Mathematical Education, 36(1), 149-159.
  38. Kwon, S. H. (2017). A comparative analysis of Korean and CMP textbooks through the lens of RME: The case of integers and rational numbers. The Journal of Curriculum and Instruction Studies, 10(1), 1-21.
  39. Lee, D. H., & Suh, K. S. (2004). The history of mathematical problem solving. Journal for History of Mathematics, 17(4), 123-131.
  40. Lee, J., & Yi, G. (2021). Pre-service teachers' conceptions about considering the realistic contexts in the word problems. The Mathematical Education, 60(4), 509-527. https://doi.org/10.7468/mathedu.2021.60.4.509
  41. Lesh, R., Doerr, H. M., Carmona, G., & Hjalmarson, M. (2003). Beyond constructivism. Mathematical Thinking and Learning, 5(2-3), 211-233. https://doi.org/10.1080/10986065.2003.9680000
  42. Lombardi, M. M., & Oblinger, D. G. (2007). Authentic learning for the 21st century: An overview. Educause learning initiative, 1(2007), 1-12.
  43. Na, G. S., Park, M. M., Kim, D. W., Kim, Y. & Lee, S. J. (2018). Exploring the direction of mathematics education in the future age. Journal of Educational Research in Mathematics, 28(4), 437-478. https://doi.org/10.29275/jerm.2018.11.28.4.437
  44. Na, M. Y., & Kwon, O. N. (2012). Analysis of middle school textbooks for understanding real-life context problems: Focusing on the 'text and expression' unit of the first grade of the middle school 'letter and formula'. Studies in Mathematical Education, 2012(1). 159-163.
  45. The National Council of Teachers of Mathematics (2000). Principles and standards for school mathematics. NCTM.
  46. Noh, J. H. (2016). Analyzing contexts used in textbook problems: A case of precalculus. Communications of Mathematical Education, 30(3), 295-308. http://doi.org/10.7468/jksmee.2016.30.3.295
  47. OECD. (2016). PISA 2015 results: Excellence and equity in education (Volume I). Paris: OECD Publishing.
  48. Palm, T. (2006). Word problems as simulations of real-world situations: A proposed framework. For the Learning of Mathematics, 26(1), 42-47.
  49. Palm, T. (2008). Impact of authenticity on sense making in word problem solving. Educational studies in mathematics, 67, 37-58. https://doi.org/10.1007/s10649-007-9083-3
  50. Park, W. H., & Choi, S. S. (2022). A comparative study on international baccalaureate diploma programme (IBDP) textbooks and Korean textbooks by the 2015 revised curriculum -Focus on function from a mathematical modeling perspective-. Journal of the Korean School Mathematics Society, 25(2), 125-148. http://doi.org/10.30807/ksms.2022.25.2.002
  51. Pyo, Y. S., & Lee, J. W. (2007). Development and application of real-life problems for uplifting problem-solving skills: Focused on geometry of middle school mathematics curriculum. Communications of Mathematical Education, 31(2), 177-197.
  52. Riyanto, B. (2022). Designing mathematical modeling tasks for learning mathematics. 2nd National Conference on Mathematics Education 2021 (NaCoME 2021) (pp. 39-46). Atlantis Press.
  53. Sevinc, S., & Lesh, R. (2018). Training mathematics teachers for realistic math problems: a case of modeling-based teacher education courses. ZDM, 50, 301-314. https://doi.org/10.1007/s11858-017-0898-9
  54. Stein, S. J., Isaacs, G., & Andrews, T. (2004). Incorporating authentic learning experiences within a university course. Studies in Higher Education, 29(2), 239-258. https://doi.org/10.1080/0307507042000190813
  55. Stohlmann, M., Maiorca, C., & Allen, C. (2017). A case study of teachers' development of well-structured mathematical modelling activities. Mathematics Teacher Education and Development, 19(2), 4-24.
  56. Strobel, J., Wang, J., Weber, N. R., & Dyehouse, M. (2013). The role of authenticity in design-based learning environments: The case of engineering education. Computers & Education, 64, 143-152. https://doi.org/10.1016/j.compedu.2012.11.026
  57. Treffers, A. (1987). Three dimensions: A model of goal and theory description in mathematics instruction. Reidel.
  58. Turner, E. E., Bennett, A. B., Granillo, M., Ponnuru, N., Roth Mcduffie, A., Foote, M. Q., ... & McVicar, E. (2022). Authenticity of elementary teacher designed and implemented mathematical modeling tasks. Mathematical Thinking and Learning, 1-24. https://doi.org/10.1080/10986065.2022.2028225
  59. Verschaffel, L., Greer, B., & De Corte, E. (2000). Making sense of word problems. Swets & Zeitlinger Publishers.
  60. Vos, P. (2018). "How real people really need mathematics in the real world"-Authenticity in mathematics education. Education Sciences, 8(4), 195. https://doi.org/10.3390/educsci8040195
  61. Yoon, J. H., & Kyu, S. R. (2008). A study on teaching of ration graph based on realistic mathematics education. Education of Primary School Mathematics, 11(1), 39-57.