DOI QR코드

DOI QR Code

Shear performance of AAC masonry triplets strengthened by reinforcing steel wire mesh in the bed and bed-head joint

  • Received : 2023.06.22
  • Accepted : 2023.07.30
  • Published : 2023.09.25

Abstract

Over the course of the last 4-5 years, India's northeastern region have widely used Autoclaved Aerated Concrete (AAC) blocks to construct load-bearing masonry structures. The aim of this investigation is to examine the shear characteristics of AAC masonry triplet assemblage strengthened by using two techniques, i.e., the bead joint (BJ) and the bed-head joint (BHJ) technique. Three unique variations of wire mesh were involved in the strengthening method. Furthermore, three strengthening configurations were used to strengthen each of the three wire mesh variations and the two-strengthening method, i.e. (-), L and (Z) configuration. The unreinforced and reinforced triplet masonry wallets were tested under direct shear test. From the results obtained, the 'BJ'triplet masonry wallets observed an enhanced in shear strength of about 2.23% to 23.33 % whereas the 'BHJ' triplet masonry wallets observed an enhanced in shear strength of about 22.92% to 50.69%. The "BHJ" strengthening method effectively enhance the shear strength of the triplet masonry wallets compared to the "BJ" and the "UR" wallets with an increase in capacity as the wire mesh strength increases. Furthermore, in terms of the strengthening configuration, the (Z) configuration performs better, followed by the (L) and (-) configuration demonstrating the strengthening configuration effectiveness.

Keywords

References

  1. ACI 549.1R-93 (1993), Guide for Design, Construction & Repair of Ferrocement, American Concrete Institute, Farmington Hills, MI, USA.
  2. Al-Salloum, Y.A. and Almusallam, T.H. (2003), "Rehabilitation of the infrastructure using composite materials: Overview and applications", J. King Saud Univ. Eng. Sci., 16(1), 1-20. https://doi.org/10.1016/S1018-3639(18)30777-3.
  3. ASTM A370 (2016), Standard Test Methods and Definitions for Mechanical Testing of Steel Products, ASTM International, West Conshohocken, PA, USA.
  4. Babatunde, S.A. (2017), "Review of strengthening techniques for masonry using fiber reinforced polymers", Compos. Struct., 161, 246-255. https://doi.org/10.1016/j.compstruct.2016.10.132.
  5. Banerjee, S., Nayak, S. and Das, S. (2018), "Enhancing shear capacity of masonry wallet using PP-band and steel wire mesh", IOP Conf. Ser.: Mater. Sci. Eng., 431(7), 072004. https://doi.org/10.1088/1757-899X/431/7/072004.
  6. Banerjee, S., Nayak, S. and Das, S. (2020a), "Improving the in-plane behavior of brick masonry wallet using PP band and steel wire mesh", J. Mater. Civil Eng., 32(6), 1-15. https://doi.org/10.1061/(asce)mt.1943-5533.0003159.
  7. Banerjee, S., Nayak, S. and Das, S. (2020b), "Shear and flexural behaviour of unreinforced masonry wallets with steel wire mesh", J. Build. Eng., 30, 101254. https://doi.org/10.1016/j.jobe.2020.101254.
  8. Behera, B. and Nanda, R.P. (2021), "In-plane shear strengthening of brick masonry panel with geogrid reinforcement embedded in bed and bed-head joints mortar", Eng. Struct., 227, 111411. https://doi.org/10.1016/j.engstruct.2020.111411.
  9. Behera, B. and Nanda, R.P. (2022), "Geogrid reinforced brick buildings for earthquake disaster mitigations", Case Stud. Constr. Mater., 16, e01113. https://doi.org/10.1016/j.cscm.2022.e01113.
  10. Chourasia, A., Singhal, S. and Parashar, J. (2019), "Experimental investigation of seismic strengthening technique for confined masonry buildings", J. Build. Eng., 25, 100834. https://doi.org/10.1016/j.jobe.2019.100834.
  11. Dutta, S.C., Mukhopadhyay, P.S., Saha, R. and Nayak, S. (2015), "2011 Sikkim earthquake at eastern Himalayas: Lessons learnt from performance of structures", Soil Dyn. Earthq. Eng., 75, 121-129. https://doi.org/10.1016/j.soildyn.2015.03.020.
  12. Dutta, S.C., Nayak, S., Acharjee, G., Panda, S.K. and Das, P.K. (2016), "Gorkha (Nepal) earthquake of April 25, 2015: Actual damage, retrofitting measures and prediction by RVS for a few typical structures", Soil Dyn. Earthq. Eng., 89, 171-184. https://doi.org/10.1016/j.soildyn.2016.08.010.
  13. ElGawady, M.A., Lestuzzi, P. and Badoux, M. (2007), "Static cyclic response of masonry walls retrofitted with fiber-reinforced polymers", J. Compos. Constr., 11(1), 50-61. https://doi.org/10.1061/(asce)1090-0268(2007)11:1(50).
  14. Eslami, A. and Ronagh, H.R. (2013), "Effect of FRP wrapping in seismic performance of RC buildings with and without special detailing - A case study", Compos. Part B: Eng., 45(1), 1265-1274. https://doi.org/10.1016/j.compositesb.2012.09.031.
  15. GB/T 50129 (2011), Standard for Test Method of Basic Mechanical Properties of Masonry, Architecture & Building Press, Beijing, China. (in Chinese)
  16. Guner, Y., Ozturk, D., Ercan, E. and Nuhoglu, A. (2022), "Investigation on the masonry vault by experimental and numerical approaches", Earthq. Struct., 23(1), 13-21. https://doi.org/10.12989/eas.2022.23.1.013.
  17. Hollaway, L.C. and Teng, J.G. (2008), Strengthening and Rehabilitation of Civil Infrastructures Using Fibre-Reinforced Polymer (FRP) Composites, Woodhead Publishing, Cambridge, UK.
  18. Hadzima-Nyarko, M., Ademovic, N., Pavic, G. and Sipos, T.K. (2018), "Strengthening techniques for masonry structures of cultural heritage according to recent Croatian provisions", Earthq. Struct., 15(5), 473-485. https://doi.org/10.12989/eas.2018.15.5.473.
  19. IS 6441 (1972), Indian Standard Methods of Test for Autoclaved Cellular Concrete Products, Part 1: Determination of Unit Weight or Bulk Density and Moisture Content, BIS (Bureau of Indian Standards), New Delhi, India.
  20. IS 6441 (1972), Indian Standard Methods of Test for Autoclaved Cellular Concrete Products, Part 5: Determination of Compressive Strength, BIS (Bureau of Indian Standards), New Delhi.
  21. IS 2250 (1981), Indian Standard Code of Practice for Preperation and Use of Masonry Mortars, BIS (Bureau of Indian Standards), New Delhi, India.
  22. Ismail, N. and Khattak, N. (2019), "Observed failure modes of unreinforced masonry buildings during the 2015 Hindu Kush earthquake", Earthq. Eng. Eng. Vib., 18(2), 301-314. https://doi.org/10.1007/s11803-019-0505-x.
  23. Istegun, B. and Celebi, E. (2018), "Triplet shear tests on masonry units with and without seismic textile reinforcement", Lecture Note. Civil Eng., 7, 427-435. https://doi.org/10.1007/978-3-319-64349-6_34.
  24. Jagadish, K.S., Raghunath, S. and Nanjunda Rao, K.S. (2003), "Behaviour of masonry structures during the Bhuj earthquake of January 2001", J. Earth Syst. Sci., 112, 431-440. https://doi.org/10.1007/BF02709270.
  25. Jasinski, R. and Drobiec, L. (2016), "Study of autoclaved aerated concrete masonry walls with horizontal reinforcement under compression and shear", Procedia Eng., 161, 918-924. https://doi.org/10.1016/j.proeng.2016.08.758.
  26. Jiao, Z., Wang, Y., Zheng, W., Huang, W. and Zhao, Y. (2019), "Bond properties of alkali-activated slag concrete hollow block masonry with different mortar strength grades", Constr. Build. Mater., 216, 149-165. https://doi.org/10.1016/j.conbuildmat.2019.05.007.
  27. Kadam, S.B., Singh, Y. and Li, B. (2014), "Strengthening of unreinforced masonry using welded wire mesh and micro-concrete - Behaviour under in-plane action", Constr. Build. Mater., 54, 247-257. https://doi.org/10.1016/j.conbuildmat.2013.12.033.
  28. Kaish, A.B.M.A., Jamil, M., Raman, S.N., Zain, M.F.M. and Nahar, L. (2018), "Ferrocement composites for strengthening of concrete columns: A review", Constr. Build. Mater., 160, 326-340. https://doi.org/10.1016/j.conbuildmat.2017.11.054.
  29. Kanchidurai, S., Krishanan, P.A., Baskar, K. and Mohan, K.S.R. (2019), "Strength characteristic of novel mesh embedment technique for new brick construction with least expensive material", Eng. Struct., 178, 484-492. https://doi.org/10.1016/j.engstruct.2018.10.062.
  30. Kouris, L.A.S. and Triantafillou, T.C. (2018), "State-of-the-art on strengthening of masonry structures with textile reinforced mortar (TRM)", Constr. Build. Mater., 188, 1221-1233. https://doi.org/10.1016/j.conbuildmat.2018.08.039.
  31. Lan, G., Wang, Y., Xin, L. and Liu, Y. (2020), "Shear test method analysis of earth block masonry mortar joints", Constr. Build. Mater., 264, 119997. https://doi.org/10.1016/j.conbuildmat.2020.119997.
  32. Luccioni, B. and Rougier, V.C. (2010), "Shear behaviour of brick-mortar interface in CFRP retrofitted or repaired masonry", Int. J. Mech. Sci., 52(4), 602-611. https://doi.org/10.1016/j.ijmecsci.2009.12.009.
  33. Lukasz, D. (2021), "Study of impact of bed joint reinforcement on load-carrying capacity and crack resistance of masonry walls made of calcium silicate units", J. Build. Eng., 33, 101841. https://doi.org/10.1016/j.jobe.2020.101841.
  34. Magenes, G. and Calvi, G.M. (1997), "In-plane seismic response of brick masonry walls", Earthq. Eng. Struct. Dyn., 26(11), 1091-1112. https://doi.org/10.1002/(SICI)1096-9845(199711)26:11<1091::AID-EQE693>3.0.CO;2-6.
  35. Naser, M.Z., Hawileh, R.A. and Abdalla, J.A. (2019), "Fiber-reinforced polymer composites in strengthening reinforced concrete structures: A critical review", Eng. Struct., 198, 109542. https://doi.org/10.1016/j.engstruct.2019.109542.
  36. Nicola, T., Leandro, C., Guido, C. and Enrico, S. (2015), "Masonry infilled frame structures: State of art review of numerical modelling", Earthq. Struct., 8(1), 225-251. https://doi.org/10.12989/eas.2015.8.1.225.
  37. Pavan, G.S. and Nanjunda Rao, K.S. (2016), "Behavior of brick-mortar interfaces in FRP-strengthened masonry assemblages under normal loading and shear loading", J. Mater. Civil Eng., 28(2), 1-14. https://doi.org/10.1061/(asce)mt.1943-5533.0001388.
  38. Petrovcic, S. and Kilar, V. (2022), "Design considerations for retrofitting of historic masonry structures with externally bonded FRP systems", Int. J. Arch. Herit., 16(7), 957-976. https://doi.org/10.1080/15583058.2020.1853278.
  39. Piekarczyk, A. (2018), "Flexural strength of AAC masonry with bed joint reinforcement", Ce/Papers, 2(4), 389-396. https://doi.org/10.1002/cepa.887.
  40. Raj, A., Borsaikia, A.C. and Dixit, U.S. (2020a), "Evaluation of mechanical properties of autoclaved aerated concrete (AAC) block and its masonry", J. Inst. Eng. (India): Ser. A, 101(2), 315-325. https://doi.org/10.1007/s40030-020-00437-5.
  41. Raj, A., Borsaikia, A.C. and Dixit, U.S. (2020b), "Bond strength of autoclaved aerated concrete (AAC) masonry using various joint materials", J. Build. Eng., 28, 101039. https://doi.org/10.1016/j.jobe.2019.101039.
  42. Rossetto, T. and Peiris, N. (2009), "Observations of damage due to the Kashmir earthquake of October 8, 2005 and study of current seismic provisions for buildings in Pakistan", Bull. Earthq. Eng., 7(3), 681-699. https://doi.org/10.1007/s10518-009-9118-5.
  43. Sadek, H. and Lissel, S. (2013), "Seismic performance of masonry walls with GFRP and Geogrid Bed joint reinforcement", Constr. Build. Mater., 41, 977-989. https://doi.org/10.1016/j.conbuildmat.2012.07.005.
  44. Sandoval, O.J., Takeuchi, C., Carrillo, J. and Barahona, B. (2021), "Performance of unreinforced masonry panels strengthened with mortar overlays reinforced with welded wire mesh and transverse connectors", Constr. Build. Mater., 267, 121054. https://doi.org/10.1016/j.conbuildmat.2020.121054.
  45. Sanginabadi, K., Yazdani, A., Mostofinejad, D. and Czaderski, C. (2022), "RC members externally strengthened with FRP composites by grooving methods including EBROG and EBRIG: A state-of-the-art review", Constr. Build. Mater., 324, 126662. https://doi.org/10.1016/j.conbuildmat.2022.126662.
  46. Sathiparan, N. (2020), "State of art review on PP-band retrofitting for masonry structures", Innov. Infrastr. Solut., 5(2), 62. https://doi.org/10.1007/s41062-020-00316-9.
  47. Sathiparan, N., Nissanka, N.A.A.C. and Priyankara, R.L.S. (2016), "A comparative study of meshtype retrofitting for unreinforced masonry under in-plane loading", Arab. J. Sci. Eng., 41(4), 1391-1401. https://doi.org/10.1007/s13369-015-1937-x.
  48. Shermi, C. and Dubey, R.N. (2018), "In-plane behaviour of unreinforced masonry panel strengthened with welded wire mesh and mortar", Constr. Build. Mater., 178, 195-203. https://doi.org/10.1016/j.conbuildmat.2018.04.081.
  49. Siddika, A., Mamun, M.A.A., Alyousef, R. and Amran, Y.H.M. (2019), "Strengthening of reinforced concrete beams by using fiber-reinforced polymer composites: A review", J. Build. Eng., 25, 100798. https://doi.org/10.1016/j.jobe.2019.100798.
  50. Singhal, V. and Rai, D.C. (2014), "Suitability of half-scale burnt clay bricks for shake table tests on masonry walls", J. Mater. Civil Eng., 26(4), 644-657. https://doi.org/10.1061/(asce)mt.1943-5533.0000861.
  51. Suraj, S. and Unnikrishnan, S. (2020), "Strengthening of concrete block masonry walls using steel wire mesh", Lecture Note. Civil Eng., 46, 749-762. https://doi.org/10.1007/978-3-030-26365-2_69.
  52. Syiemiong, H. and Marthong, C. (2020), "Flexural behavior of low strength masonry wallettes strengthened with welded wire mesh", Mater. Today: Proc., 43, 1774-1779. https://doi.org/10.1016/j.matpr.2020.10.452.
  53. Tripathy, D. and Singhal, V. (2021), "Strengthening of weak masonry assemblages using wire reinforced cementitious matrix (WRCM) for shear and flexure loads", Constr. Build. Mater., 277, 122223. https://doi.org/10.1016/j.conbuildmat.2020.122223.
  54. Tumialan, J.G., Micelli, F. and Nanni, A. (2001), "Strengthening of masonry structures with FRP composites", Proceedings of the 2001 Structures Congress and Exposition, Washington, D.C., USA, May.