References
- S. Banach, Sur les oprations dans les ensembles abstraits et leur application aux quations integrals, Fundam. Math., 3 (1922), 133-181. https://doi.org/10.4064/fm-3-1-133-181
- M. Edelstein, An extension of Banach's contraction principle, Proc. Amer. Math. Soc., 12 (1961), 7-10. https://doi.org/10.1090/S0002-9939-1961-0120625-6
- M.M. Fr'echet, Sur quelques points du culcul fonctionnel, Rendiconti del Circolo Matematico di Palermo, 22(1) (1906), 1-72. https://doi.org/10.1007/BF03018603
- D.S. Jaggi, Some unique fixed point theorems, Indian J. Pure Appl. Math., 8(2) (1977), 223-230.
- R. Kannan, Some results on fixed points, Bull. Calcutta Math. Soc., 60 (1968), 71-76.
- E. Karapinar and A. Fulga, A hybrid contraction that involves Jaggi type, Symmetry, 5 (2019), 715.
- J.K. Kim, M. Kumar and Pankaj, ω-Interpolative contractions in bipolar metric spaces, Nonlinear Funct Anal. Appl., 28(2) (2023), 383-394.
- D. Kitkuan, A. Padcharoen, J.K. Kim and W.H. Lim, On α-Geraghty contractive mappings in bipolar metric spaces, Nonlinear Funct Anal. Appl., 28(1) (2023), 295-309.
- A. Meir and E. Keeler, A theorem on contraction mappings, J. Math. Anal. Appl., 28 (1969), 326-329. https://doi.org/10.1016/0022-247X(69)90031-6
- Z. Mustafa and B. Sims, A new aprroach to generalized metric spaces, J. Nonlinear Convex Anal., 7(2) (2006), 289-297.
- A. Mutlu and U. Gurdal, Bipolar metric spaces and some fixed point theorems, J. Nonlinear Sci. Appl., 9 (2016), 5362-5373. https://doi.org/10.22436/jnsa.009.09.05
- A. Mutlu, U. Gurdal and K. Ozkan, Fixed point results for α - ψ-contractive mappings in bipolar metric spaces, J. Ineq. Special Funct., 11 (2020), 64-75.
- A. Mutlu, U. Gurdal and K. Ozkan, Fixed point theorems for multivalued mappings on bipolar metric spaces, Fixed Point Theory, 21(1) (2020), 271-280. https://doi.org/10.24193/fpt-ro.2020.1.19
- B. Samet, Coupled fixed point theorems for a generalized Meir-Keeler contraction in partially ordered metric spaces, Nonlinear. Anal., 72(12) (2010), 4508-4517. https://doi.org/10.1016/j.na.2010.02.026
- B. Samet, Fixed points for α - ψ-contractive mappings with an application to quadratic integral equations, Elec. J. Diff. Equa., 152 (2014), 1-18.
- B. Samet, C. Vetro and P. Vetro, Fixed point theorems for α - ψ-contractive type mappings, Nonlinear Anal., 75(4) (2012), 2154-2162. https://doi.org/10.1016/j.na.2011.10.014