DOI QR코드

DOI QR Code

OPTIMAL CONTROL PROBLEM FOR HOST-PATHOGEN MODEL

  • P. T. Sowndarrajan (Division of Mathematics, School of Applied Sciences, Vellore Institute of Technology)
  • Received : 2022.11.02
  • Accepted : 2023.03.02
  • Published : 2023.09.15

Abstract

In this paper, we study the distributed optimal control problem of a coupled system of the host-pathogen model. The system consists of the density of the susceptible host, the density of the infected host, and the density of pathogen particles. Our main goal is to minimize the infected density and also to decrease the cost of the drugs administered. First, we prove the existence and uniqueness of solutions for the proposed problem. Then, the existence of the optimal control is established and necessary optimality conditions are also derived.

Keywords

Acknowledgement

The author would like to thank the anonymous referees for their valuable comments and suggestions, which improved the quality of this article.

References

  1. M.O. Adewole, Analysis of Transmission Dynamics of Cholera: An Optimal Control Strategy, J. Appl. Nonlinear Dyn., 11(2) (2022), 387-400.  https://doi.org/10.5890/JAND.2022.06.009
  2. R.M. Anderson and R.M. May, The population dynamics of microparasites and their invertebrate hosts, Phil. Trans. Royal Soc. London B, Biol. Sci., 291 (1981), 451-524.  https://doi.org/10.1098/rstb.1981.0005
  3. B.S. Attili, Investigation of the Stability and the Anti-Synchronization of the Brusselator Chemical Reaction Model, Nonlinear Funct. Anal. Appl., 25(1) (2020), 189-197. 
  4. V. Barbu, Mathematical Methods in Optimization of Differential Systems, Kluwer Academic Publishers, Dordrecht, 1994. 
  5. E.H. Bussell and N.J. Cunniffe, Optimal strategies to protect a sub-population at risk due to an established epidemic, J. R. Soc. Interface, 19(186) (2022), DOI:10.1098/rsif.2021.0718. 
  6. M. Divya, Optimal control and Hopf Bifurcation analysis of delay dependent HIV protease inhibitor model, Nonlinear Funct. Anal. Appl., 25(3) (2020), 453-471. 
  7. S. Duhring, J. Ewald, S. Germerodt, C. Kaleta, T. Dandekar and S. Schuster, Modelling the hostpathogen interactions of macrophages and Candida albicans using Game Theory and dynamic optimization, J. R. Soc. Interface, 14 (2017), DOI:10.1098/rsif.2017.0095. 
  8. G. Dwyer, Density Dependence and Spatial Structure in the Dynamics of Insect Pathogens, The American Naturalist, 143 (1994), 533-562.  https://doi.org/10.1086/285619
  9. A. El Alami Laaroussi and M. Rachik, On the regional control of a reaction-diffusion system SIR, Bull. Math. Biol., 82 (2020), 125. 
  10. J. Ewald, P. Sieber, R. Garde, S.N. Lang, S. Schuster and B. Ibrahim, Trends in mathematical modeling of hostpathogen interactions, Cell. Mol. Life Sci., 77 (2020), 467-480.  https://doi.org/10.1007/s00018-019-03382-0
  11. J. Ge, K.I. Kim, Z. Lin and H. Zhu, A SIS reaction-diffusion-advection model in a low-risk and high-risk domain, J. Diff. Equ., 259 (2015), 5486-5509.  https://doi.org/10.1016/j.jde.2015.06.035
  12. A.E.A. Laaroussi, R. Ghazzali, M. Rachik and S. Benrhila, Modeling the spatiotemporal transmission of Ebola disease and optimal control: a regional approach, Int. J. Dyn. Control, 7 (2019), 1110-1124.  https://doi.org/10.1007/s40435-019-00525-w
  13. Y. Liu, S. Jian and J. Gao, Dynamics analysis and optimal control of SIVR epidemic model with incomplete immunity, Adv. Cont. Discr. Mod., 1 (2022), 1-22. 
  14. A. Pazy, Semigroups of Linear Operators and Applications to Partial Differential Equations, Applied Mathematical Sciences, Vol. 44, Springer-Verlag, New York, 1983. 
  15. O.J. Peter, A.I. Abioye, F.A. Oguntolu, T.A. Owolabi, M.O. Ajisope, A.G. Zakari and T.G. Shaba, Modelling and optimal control analysis of Lassa fever disease, Inform. Med. Unlocked, 20 (2020), DOI:10.1016/j.imu.2020.100419. 
  16. M. Shirazian and M.H. Farahi, Optimal control strategy for a fully determined HIV model, Intelligent Control and Automation, 1(1) (2010), 15-19.  https://doi.org/10.4236/ica.2010.11002
  17. P.T. Sowndarrajan, Existence and optimal control analysis of acid-mediated tumor invasion model, Adv. Diff. Equ. Control Processes, 30 (2023), 53-72. 
  18. P.T. Sowndarrajan, N. Nyamoradi, L. Shangerganesh and J. Manimaran, Mathematical analysis of an optimal control problem for the predatorprey model with disease in prey, Optim. Control Appl. Methods, 41(5) (2020), 1495-1509.  https://doi.org/10.1002/oca.2611
  19. P.T. Sowndarrajan, L. Shangerganesh, A. Debbouche and D.F.M. Torres, Optimal control of a heroin epidemic mathematical model, Optimization, 71(11) (2021), 3107-3131.  https://doi.org/10.1080/02331934.2021.2009823
  20. I. Vrabie, C0 -Semigroups and Applications, Math. Stud. North-Holland, 191, 2003. 
  21. J. Wang and R. Cui, Analysis of a diffusive host-pathogen model with standard incidence and distinct dispersal rates, Adv. Nonlinear Anal., 10(1) (2021), 922-951.  https://doi.org/10.1515/anona-2020-0161
  22. W. Wang, W. Ma and Z. Feng, Complex dynamics of a time periodic nonlocal and time-delayed model of reaction-diffusion equations for modeling CD4+ T cells decline, J. Comput. Appl. Math., 367 (2020), doi.org/10.1016/j.cam.2019.112430. 
  23. F.B. Wang, J. Shi and X. Zou, Dynamics of a host-pathogen system on a bounded spatial domain, Commun. Pure Appl. Anal., 14(6) (2015), 25-35.  https://doi.org/10.3934/cpaa.2015.14.2535
  24. H. Zine, A.E. Adraoui and D.F.M. Torres, Mathematical analysis, forecasting and optimal control of HIV/AIDS spatiotemporal transmission with a reaction diffusion SICA model, AIMS, Mathematics, 7(9) (2022), 16519-16535. https://doi.org/10.3934/math.2022904