Acknowledgement
본 연구는 산업통상자원부(과제번호 : 20009796)와 한국화학연구원 주요사업(KK2311-40)을 통해 수행되었으며 이에 감사드립니다.
References
- H. H. Aung, R. Patel, and J. H. Kim, "Review on antifouling membranes with surface- patterning for water purification", Membr. J., 31, 161-169 (2021). https://doi.org/10.14579/MEMBRANE_JOURNAL.2021.31.3.161
- M. Kim, S. Kim, S. Kim, H. Lee, and J. F. Kim, "Effect of nonwoven support during fabrication of flat sheet membranes via phase inversion method", Membr. J., 32, 109-115 (2022). https://doi.org/10.14579/MEMBRANE_JOURNAL.2022.32.2.109
- P. van de Witte, P. J. Dijkstra, J. W. A. van den Berg, and J. Feijen, "Phase separation processes in polymer solutions in relation to membrane formation", J. Membr. Sci., 117, 1-31 (1996). https://doi.org/10.1016/0376-7388(96)00088-9
- N. Ismail, A. Venault, J.-P. Mikkola, D. Bouyer, E. Drioli, and N. Tavajohi Hassan Kiadeh, "Investigating the potential of membranes formed by the vapor induced phase separation process", J. Membr. Sci., 597, 117601 (2020).
- X. Wang, D. Chen, T. He, Y. Zhou, L. Tian, Z. Wang, and Z. Cui, "Preparation of lateral flow pvdf membrane via combined vapor- and non-solvent-induced phase separation (V-NIPS)", Membranes, 13, 91 (2023).
- C.-K. Yeom, J. Kim, H. Park, S. E. Park, K. Y. Lee, and K.-H. Lee, "Formation of mesoporous membrane by reverse thermally induced phase separation (RTIPS) process using flash freezing", Membr. J., 31, 67-79 (2021). https://doi.org/10.14579/MEMBRANE_JOURNAL.2021.31.1.67
- A. Dehban, F. Hosseini Saeedavi, and A. Kargari, "A study on the mechanism of pore formation through VIPS-NIPS technique for membrane fabrication", J. Ind. Eng. Chem., 108, 54-71 (2022). https://doi.org/10.1016/j.jiec.2021.12.023
- E. Yi, H. S. Kang, S. M. Lim, H. J. Heo, D. Han, J. F. Kim, A. Park, D. H. Choi, Y.-I. Park, H. Park, Y. H. Cho, and E.-H. Sohn, "Superamphiphobic blood-repellent surface modification of porous fluoropolymer membranes for blood oxygenation applications", J. Membr. Sci., 648, 120363 (2022).
- K. K. Chen, W. Salim, Y. Han, D. Wu, and W. S. W. Ho, "Fabrication and scale-up of multi-leaf spiral-wound membrane modules for CO2 capture from flue gas", J. Membr. Sci., 595, 117504 (2020).
- S. J. Moon, Y. J. Kim, and J. H. Kim, "Tutorial review on membrane classification and preparation methods", Membr. J., 32, 198-208 (2022). https://doi.org/10.14579/MEMBRANE_JOURNAL.2022.32.3.198
- D. H. Choi, S. Kwon, Y. Yoo, I.-C. Kim, H. Park, Y.-I. Park, S. Y. Yang, S.-E. Nam, and Y. H. Cho, "Isoporous polyvinylidene fluoride membranes with selective skin layers via a thermal-vapor assisted phase separation method for industrial purification applications", Membranes, 12, 250 (2022).
- J. T. Jung, H. H. Wang, J. F. Kim, J. Lee, J. S. Kim, E. Drioli, and Y. M. Lee, "Tailoring non-solvent-thermally induced phase separation (N-TIPS) effect using triple spinneret to fabricate high performance PVDF hollow fiber membranes", J. Membr. Sci., 559, 117-126 (2018). https://doi.org/10.1016/j.memsci.2018.04.054
- R. Li, P. Lyu, L. Xia, X. Li, C. Zhang, X. Liu, and W. Xu, "Tuning surface texture of thermoplastic polyurethane/silk fibroin composites by phase separation method", Compos. Commun., 29, 101039 (2022).
- P. Radovanovic, S. W. Thiel, and S.-T. Hwang, "Formation of asymmetric polysulfone membranes by immersion precipitation. Part I. Modelling mass transport during gelation", J. Membr. Sci., 65, 213-229 (1992). https://doi.org/10.1016/0376-7388(92)87024-R
- H. Susanto, N. Stahra, and M. Ulbricht, "High performance polyethersulfone microfiltration membranes having high flux and stable hydrophilic property", J. Membr. Sci., 342, 153-164 (2009). https://doi.org/10.1016/j.memsci.2009.06.035
- Y. J. Song, J. H. Kim, Y. S. Kim, S. D. Kim, Y. H. Cho, H. Park, S.-E. Nam, Y.-I. Park, E.-H. Sohn, and J. F. Kim, "Controlling the morphology of polyvinylidene-co-hexafluoropropylene (PVDF-co-HFP) membranes via phase inversion method", Membr. J., 28, 187-195 (2018). https://doi.org/10.14579/MEMBRANE_JOURNAL.2018.28.3.187
- R. Thomas, E. Guillen-Burrieza, and H. A. Arafat, "Pore structure control of PVDF membranes using a 2-stage coagulation bath phase inversion process for application in membrane distillation (MD)", J. Membr. Sci., 452, 470-480 (2014). https://doi.org/10.1016/j.memsci.2013.11.036
- C. Zhao, J. Xue, F. Ran, and S. Sun, "Modification of polyethersulfone membranes - A review of methods", Prog. Mater. Sci., 58, 76-150 (2013). https://doi.org/10.1016/j.pmatsci.2012.07.002
- L. Zverina, M. Koch, M. F. Andersen, M. Pinelo, J. M. Woodley, and A. E. Daugaard, "Controlled pore collapse to increase solute rejection of modified PES membranes", J. Membr. Sci., 595, 117515 (2020).
- E. Fontananova, J. C. Jansen, A. Cristiano, E. Curcio, and E. Drioli, "Effect of additives in the casting solution on the formation of PVDF membranes", Desalination, 192, 190-197 (2006). https://doi.org/10.1016/j.desal.2005.09.021
- A. Hamraoui and T. Nylander, "Analytical approach for the Lucas-Washburn equation", J. Colloid Interface Sci., 250, 415-421 (2002). https://doi.org/10.1006/jcis.2002.8288
- L. R. Fisher and P. D. Lark, "An experimental study of the washburn equation for liquid flow in very fine capillaries", J. Colloid Interface Sci., 69, 486-492 (1979). https://doi.org/10.1016/0021-9797(79)90138-3
- M. Xiao, F. Yang, S. Im, D. S. Dlamini, D. Jassby, S. Mahendra, R. Honda, and E. M. V. Hoek, "Characterizing surface porosity of porous membranes via contact angle measurements", J. Membr. Sci. Lett., 2, 100022 (2022).
- F. A. AlMarzooqi, M. R. Bilad, B. Mansoor, and H. A. Arafat, "A comparative study of image analysis and porometry techniques for characterization of porous membranes", J. Mater. Sci., 51, 2017-2032 (2016). https://doi.org/10.1007/s10853-015-9512-0
- P. van der Marel, A. Zwijnenburg, A. Kemperman, M. Wessling, H. Temmink, and W. van der Meer, "Influence of membrane properties on fouling in submerged membrane bioreactors", J. Membr. Sci., 348, 66-74 (2010). https://doi.org/10.1016/j.memsci.2009.10.054
- N. Arora and R. H. Davis, "Yeast cake layers as secondary membranes in dead-end microfiltration of bovine serum albumin", J. Membr. Sci., 92, 247-256 (1994). https://doi.org/10.1016/0376-7388(94)00075-1
- A. G. Fane, C. J. D. Fell, and A. G. Waters, "The relationship between membrane surface pore characteristics and flux for ultrafiltration membranes", J. Membr. Sci., 9, 245-262 (1981). https://doi.org/10.1016/S0376-7388(00)80267-7
- C.-C. Ho and A. L. Zydney, "Effect of membrane morphology on the initial rate of protein fouling during microfiltration", J. Membr. Sci., 155, 261-275 (1999). https://doi.org/10.1016/S0376-7388(98)00324-X
- G. B. van den Berg and C. A. Smolders, "Concentration polarization phenomena during dead-end ultrafiltration of protein mixtures. The influence of solute-solute interactions", J. Membr. Sci., 47, 1-24 (1989). https://doi.org/10.1016/S0376-7388(00)80857-1
- J. Hermia, "Blocking filtration. Application to non-ewtonian fluids", pp 83-89, Springer Netherlands (1985).
- M. C. V. Vela, S. A. Blanco, J. L. Garcia, and E. B. Rodriguez, "Analysis of membrane pore blocking models applied to the ultrafiltration of PEG", Sep. Purif. Technol., 62, 489-498 (2008). https://doi.org/10.1016/j.seppur.2008.02.028
- M. C. Vincent Vela, S. Alvarez Blanco, J. Lora Garcia, and E. Bergantinos Rodriguez, "Analysis of membrane pore blocking models adapted to crossflow ultrafiltration in the ultrafiltration of PEG", Chem. Eng. J., 149, 232-241 (2009). https://doi.org/10.1016/j.cej.2008.10.027
- A. Y. Kirschner, Y.-H. Cheng, D. R. Paul, R. W. Field, and B. D. Freeman, "Fouling mechanisms in constant flux crossflow ultrafiltration", J. Membr. Sci., 574, 65-75 (2019). https://doi.org/10.1016/j.memsci.2018.12.001
- M.-J. Corbaton-Baguena, S. Alvarez-Blanco, and M.-C. Vincent-Vela, "Fouling mechanisms of ultrafiltration membranes fouled with whey model solutions", Desalination, 360, 87-96 (2015). https://doi.org/10.1016/j.desal.2015.01.019
- S. Heidari, M. Amirinejad, and H. Jahangirian, "Investigation of fouling mechanisms using surface morphology and physicochemical membrane features", Chem. Eng. Technol., 42, 1310-1320 (2019). https://doi.org/10.1002/ceat.201800635
- I. A. Khan, Y.-S. Lee, and J.-O. Kim, "A comparison of variations in blocking mechanisms of mem-brane-fouling models for estimating flux during water treatment", Chemosphere, 259, 127328 (2020).
- D. Suh, H. Jin, H. Park, C. Lee, Y. H. Cho, and Y. Baek, "Effect of protein fouling on filtrate flux and virus breakthrough behaviors during virus filtration process", Biotechnol. Bioeng., 120, 1891-1901 (2023). https://doi.org/10.1002/bit.28407
- Y.-J. Kim and K.-H. Youm, "Analysis of membrane fouling reduction by natural convection instability flow in membrane filtration of protein solution using blocking filtration model", Membr. J., 29, 18-29 (2019). https://doi.org/10.14579/MEMBRANE_JOURNAL.2019.29.1.18
- S. R. Wickramasinghe, E. D. Stump, D. L. Grzenia, S. M. Husson, and J. Pellegrino, "Understanding virus filtration membrane performance", J. Mater. Sci., 365, 160-169 (2010).
- V. Hoseinpour, A. Ghaee, V. Vatanpour, and N. Ghaemi, "Surface modification of PES membrane via aminolysis and immobilization of carboxymethylcellulose and sulphated carboxymethylcellulose for hemodialysis", Carbohydr. Polym., 188, 37-47 (2018). https://doi.org/10.1016/j.carbpol.2018.01.106
- M. Irfan and A. Idris, "Overview of PES biocompatible/hemodialysis membranes: PES-blood interactions and modification techniques", Mater. Sci. Eng. C., 56, 574-592 (2015). https://doi.org/10.1016/j.msec.2015.06.035