DOI QR코드

DOI QR Code

Improving Physical Fouling Tolerance of PES Filtration Membranes by Using Double-layer Casting Methods

PES 여과막의 물리적 막오염 개선을 위한 기공 구조 개선 연구

  • Chang-Hun Kim (Green Carbon Research Center, Chemical and Process Technology Division, Korea Research Institute of Chemical Technology) ;
  • Youngmin Yoo (Green Carbon Research Center, Chemical and Process Technology Division, Korea Research Institute of Chemical Technology) ;
  • In-Chul Kim (Green Carbon Research Center, Chemical and Process Technology Division, Korea Research Institute of Chemical Technology) ;
  • Seung-Eun Nam (Green Carbon Research Center, Chemical and Process Technology Division, Korea Research Institute of Chemical Technology) ;
  • Jung-Hyun Lee (Department of Chemical and Biological Engineering, Korea University) ;
  • Youngbin Baek (Department of Biological Engineering, Inha University) ;
  • Young Hoon Cho (Green Carbon Research Center, Chemical and Process Technology Division, Korea Research Institute of Chemical Technology)
  • 김창헌 (한국화학연구원 화학공정연구본부 그린탄소연구센터) ;
  • 유영민 (한국화학연구원 화학공정연구본부 그린탄소연구센터) ;
  • 김인철 (한국화학연구원 화학공정연구본부 그린탄소연구센터) ;
  • 남승은 (한국화학연구원 화학공정연구본부 그린탄소연구센터) ;
  • 이정현 (고려대학교 화공생명공학과) ;
  • 백영빈 (인하대학교 생명공학과) ;
  • 조영훈 (한국화학연구원 화학공정연구본부 그린탄소연구센터)
  • Received : 2023.07.03
  • Accepted : 2023.08.01
  • Published : 2023.08.31

Abstract

Polyethersulfone (PES) is a widely employed membrane material for water and industrial purification applications owing to its hydrophilicity and ease of phase separation. However, PES membranes and filters prepared using the nonsolvent induced phase separation method often encounter significant flux decline due to pore clogging and cake layer formation on the dense membrane surfaces. Our investigation revealed that tight microfiltration or loose ultrafiltration membranes can be subject to physical fouling due to the formation of a dense skin layer on the bottom side caused by water intrusion to the gap between the shrank membrane and the substrate. To investigate the effect of the bottom surface porosity on membrane fouling, two membranes with the same selective layers but different sub-layer structures were prepared using single and double layer casting methods, respectively. The double layered PES membrane with highly porous bottom surface showed high flux and physical fouling tolerance compared to the pristine single layer membrane. This study highlights the importance of physical optimization of the membrane structure to prevent membrane fouling.

Polyethersulfone (PES)은 친수성과 상분리법의 용이성 덕분에 수처리 및 정제 분야에서 정밀여과 및 한외여과막 소재로 일반적으로 사용된다. 그러나, 비용매 유도 상분리법으로 제조된 PES 분리막, 특히 지지체가 없는 여과막의 경우 도프의 조성과 기재의 특성에 따라 여과막 하부에 낮은 기공도를 갖는 치밀층이 형성되기 쉽고, 이러한 치밀층으로 인해 수투과 저항이 증가하고 오염물질의 쌓임에 의한 막오염이 일어난다. 본 연구에서는 PES 여과막 제조 시 상전이 과정의 수축으로 인해 분리막 하부에 물이 침투하여 치밀층을 형성, 심각한 막오염을 유발할 수 있음을 확인하였다. 동일한 선택층을 갖는 PES 여과막을 단일층 및 이중층 캐스팅법으로 각각 제조하여 하부 치밀층이 여과막의 투과성능 및 막오염에 미치는 영향을 파악하고자 하였다. 하부 치밀층이 없는 이중층 캐스팅된 여과막은 기존 여과막 대비 높은 투과성능 및 막오염에 대한 저항성을 보였으며, 이를 통해 다공성 여과막의 내오염성을 향상시키기 위한 표면 기공도 및 기공 구조 등 물리적 구조의 최적화가 중요함을 확인하였다.

Keywords

Acknowledgement

본 연구는 산업통상자원부(과제번호 : 20009796)와 한국화학연구원 주요사업(KK2311-40)을 통해 수행되었으며 이에 감사드립니다.

References

  1. H. H. Aung, R. Patel, and J. H. Kim, "Review on antifouling membranes with surface- patterning for water purification", Membr. J., 31, 161-169 (2021). https://doi.org/10.14579/MEMBRANE_JOURNAL.2021.31.3.161
  2. M. Kim, S. Kim, S. Kim, H. Lee, and J. F. Kim, "Effect of nonwoven support during fabrication of flat sheet membranes via phase inversion method", Membr. J., 32, 109-115 (2022). https://doi.org/10.14579/MEMBRANE_JOURNAL.2022.32.2.109
  3. P. van de Witte, P. J. Dijkstra, J. W. A. van den Berg, and J. Feijen, "Phase separation processes in polymer solutions in relation to membrane formation", J. Membr. Sci., 117, 1-31 (1996). https://doi.org/10.1016/0376-7388(96)00088-9
  4. N. Ismail, A. Venault, J.-P. Mikkola, D. Bouyer, E. Drioli, and N. Tavajohi Hassan Kiadeh, "Investigating the potential of membranes formed by the vapor induced phase separation process", J. Membr. Sci., 597, 117601 (2020).
  5. X. Wang, D. Chen, T. He, Y. Zhou, L. Tian, Z. Wang, and Z. Cui, "Preparation of lateral flow pvdf membrane via combined vapor- and non-solvent-induced phase separation (V-NIPS)", Membranes, 13, 91 (2023).
  6. C.-K. Yeom, J. Kim, H. Park, S. E. Park, K. Y. Lee, and K.-H. Lee, "Formation of mesoporous membrane by reverse thermally induced phase separation (RTIPS) process using flash freezing", Membr. J., 31, 67-79 (2021). https://doi.org/10.14579/MEMBRANE_JOURNAL.2021.31.1.67
  7. A. Dehban, F. Hosseini Saeedavi, and A. Kargari, "A study on the mechanism of pore formation through VIPS-NIPS technique for membrane fabrication", J. Ind. Eng. Chem., 108, 54-71 (2022). https://doi.org/10.1016/j.jiec.2021.12.023
  8. E. Yi, H. S. Kang, S. M. Lim, H. J. Heo, D. Han, J. F. Kim, A. Park, D. H. Choi, Y.-I. Park, H. Park, Y. H. Cho, and E.-H. Sohn, "Superamphiphobic blood-repellent surface modification of porous fluoropolymer membranes for blood oxygenation applications", J. Membr. Sci., 648, 120363 (2022).
  9. K. K. Chen, W. Salim, Y. Han, D. Wu, and W. S. W. Ho, "Fabrication and scale-up of multi-leaf spiral-wound membrane modules for CO2 capture from flue gas", J. Membr. Sci., 595, 117504 (2020).
  10. S. J. Moon, Y. J. Kim, and J. H. Kim, "Tutorial review on membrane classification and preparation methods", Membr. J., 32, 198-208 (2022). https://doi.org/10.14579/MEMBRANE_JOURNAL.2022.32.3.198
  11. D. H. Choi, S. Kwon, Y. Yoo, I.-C. Kim, H. Park, Y.-I. Park, S. Y. Yang, S.-E. Nam, and Y. H. Cho, "Isoporous polyvinylidene fluoride membranes with selective skin layers via a thermal-vapor assisted phase separation method for industrial purification applications", Membranes, 12, 250 (2022).
  12. J. T. Jung, H. H. Wang, J. F. Kim, J. Lee, J. S. Kim, E. Drioli, and Y. M. Lee, "Tailoring non-solvent-thermally induced phase separation (N-TIPS) effect using triple spinneret to fabricate high performance PVDF hollow fiber membranes", J. Membr. Sci., 559, 117-126 (2018). https://doi.org/10.1016/j.memsci.2018.04.054
  13. R. Li, P. Lyu, L. Xia, X. Li, C. Zhang, X. Liu, and W. Xu, "Tuning surface texture of thermoplastic polyurethane/silk fibroin composites by phase separation method", Compos. Commun., 29, 101039 (2022).
  14. P. Radovanovic, S. W. Thiel, and S.-T. Hwang, "Formation of asymmetric polysulfone membranes by immersion precipitation. Part I. Modelling mass transport during gelation", J. Membr. Sci., 65, 213-229 (1992). https://doi.org/10.1016/0376-7388(92)87024-R
  15. H. Susanto, N. Stahra, and M. Ulbricht, "High performance polyethersulfone microfiltration membranes having high flux and stable hydrophilic property", J. Membr. Sci., 342, 153-164 (2009). https://doi.org/10.1016/j.memsci.2009.06.035
  16. Y. J. Song, J. H. Kim, Y. S. Kim, S. D. Kim, Y. H. Cho, H. Park, S.-E. Nam, Y.-I. Park, E.-H. Sohn, and J. F. Kim, "Controlling the morphology of polyvinylidene-co-hexafluoropropylene (PVDF-co-HFP) membranes via phase inversion method", Membr. J., 28, 187-195 (2018). https://doi.org/10.14579/MEMBRANE_JOURNAL.2018.28.3.187
  17. R. Thomas, E. Guillen-Burrieza, and H. A. Arafat, "Pore structure control of PVDF membranes using a 2-stage coagulation bath phase inversion process for application in membrane distillation (MD)", J. Membr. Sci., 452, 470-480 (2014). https://doi.org/10.1016/j.memsci.2013.11.036
  18. C. Zhao, J. Xue, F. Ran, and S. Sun, "Modification of polyethersulfone membranes - A review of methods", Prog. Mater. Sci., 58, 76-150 (2013). https://doi.org/10.1016/j.pmatsci.2012.07.002
  19. L. Zverina, M. Koch, M. F. Andersen, M. Pinelo, J. M. Woodley, and A. E. Daugaard, "Controlled pore collapse to increase solute rejection of modified PES membranes", J. Membr. Sci., 595, 117515 (2020).
  20. E. Fontananova, J. C. Jansen, A. Cristiano, E. Curcio, and E. Drioli, "Effect of additives in the casting solution on the formation of PVDF membranes", Desalination, 192, 190-197 (2006). https://doi.org/10.1016/j.desal.2005.09.021
  21. A. Hamraoui and T. Nylander, "Analytical approach for the Lucas-Washburn equation", J. Colloid Interface Sci., 250, 415-421 (2002). https://doi.org/10.1006/jcis.2002.8288
  22. L. R. Fisher and P. D. Lark, "An experimental study of the washburn equation for liquid flow in very fine capillaries", J. Colloid Interface Sci., 69, 486-492 (1979). https://doi.org/10.1016/0021-9797(79)90138-3
  23. M. Xiao, F. Yang, S. Im, D. S. Dlamini, D. Jassby, S. Mahendra, R. Honda, and E. M. V. Hoek, "Characterizing surface porosity of porous membranes via contact angle measurements", J. Membr. Sci. Lett., 2, 100022 (2022).
  24. F. A. AlMarzooqi, M. R. Bilad, B. Mansoor, and H. A. Arafat, "A comparative study of image analysis and porometry techniques for characterization of porous membranes", J. Mater. Sci., 51, 2017-2032 (2016). https://doi.org/10.1007/s10853-015-9512-0
  25. P. van der Marel, A. Zwijnenburg, A. Kemperman, M. Wessling, H. Temmink, and W. van der Meer, "Influence of membrane properties on fouling in submerged membrane bioreactors", J. Membr. Sci., 348, 66-74 (2010). https://doi.org/10.1016/j.memsci.2009.10.054
  26. N. Arora and R. H. Davis, "Yeast cake layers as secondary membranes in dead-end microfiltration of bovine serum albumin", J. Membr. Sci., 92, 247-256 (1994). https://doi.org/10.1016/0376-7388(94)00075-1
  27. A. G. Fane, C. J. D. Fell, and A. G. Waters, "The relationship between membrane surface pore characteristics and flux for ultrafiltration membranes", J. Membr. Sci., 9, 245-262 (1981). https://doi.org/10.1016/S0376-7388(00)80267-7
  28. C.-C. Ho and A. L. Zydney, "Effect of membrane morphology on the initial rate of protein fouling during microfiltration", J. Membr. Sci., 155, 261-275 (1999). https://doi.org/10.1016/S0376-7388(98)00324-X
  29. G. B. van den Berg and C. A. Smolders, "Concentration polarization phenomena during dead-end ultrafiltration of protein mixtures. The influence of solute-solute interactions", J. Membr. Sci., 47, 1-24 (1989). https://doi.org/10.1016/S0376-7388(00)80857-1
  30. J. Hermia, "Blocking filtration. Application to non-ewtonian fluids", pp 83-89, Springer Netherlands (1985).
  31. M. C. V. Vela, S. A. Blanco, J. L. Garcia, and E. B. Rodriguez, "Analysis of membrane pore blocking models applied to the ultrafiltration of PEG", Sep. Purif. Technol., 62, 489-498 (2008). https://doi.org/10.1016/j.seppur.2008.02.028
  32. M. C. Vincent Vela, S. Alvarez Blanco, J. Lora Garcia, and E. Bergantinos Rodriguez, "Analysis of membrane pore blocking models adapted to crossflow ultrafiltration in the ultrafiltration of PEG", Chem. Eng. J., 149, 232-241 (2009). https://doi.org/10.1016/j.cej.2008.10.027
  33. A. Y. Kirschner, Y.-H. Cheng, D. R. Paul, R. W. Field, and B. D. Freeman, "Fouling mechanisms in constant flux crossflow ultrafiltration", J. Membr. Sci., 574, 65-75 (2019). https://doi.org/10.1016/j.memsci.2018.12.001
  34. M.-J. Corbaton-Baguena, S. Alvarez-Blanco, and M.-C. Vincent-Vela, "Fouling mechanisms of ultrafiltration membranes fouled with whey model solutions", Desalination, 360, 87-96 (2015). https://doi.org/10.1016/j.desal.2015.01.019
  35. S. Heidari, M. Amirinejad, and H. Jahangirian, "Investigation of fouling mechanisms using surface morphology and physicochemical membrane features", Chem. Eng. Technol., 42, 1310-1320 (2019). https://doi.org/10.1002/ceat.201800635
  36. I. A. Khan, Y.-S. Lee, and J.-O. Kim, "A comparison of variations in blocking mechanisms of mem-brane-fouling models for estimating flux during water treatment", Chemosphere, 259, 127328 (2020).
  37. D. Suh, H. Jin, H. Park, C. Lee, Y. H. Cho, and Y. Baek, "Effect of protein fouling on filtrate flux and virus breakthrough behaviors during virus filtration process", Biotechnol. Bioeng., 120, 1891-1901 (2023). https://doi.org/10.1002/bit.28407
  38. Y.-J. Kim and K.-H. Youm, "Analysis of membrane fouling reduction by natural convection instability flow in membrane filtration of protein solution using blocking filtration model", Membr. J., 29, 18-29 (2019). https://doi.org/10.14579/MEMBRANE_JOURNAL.2019.29.1.18
  39. S. R. Wickramasinghe, E. D. Stump, D. L. Grzenia, S. M. Husson, and J. Pellegrino, "Understanding virus filtration membrane performance", J. Mater. Sci., 365, 160-169 (2010).
  40. V. Hoseinpour, A. Ghaee, V. Vatanpour, and N. Ghaemi, "Surface modification of PES membrane via aminolysis and immobilization of carboxymethylcellulose and sulphated carboxymethylcellulose for hemodialysis", Carbohydr. Polym., 188, 37-47 (2018). https://doi.org/10.1016/j.carbpol.2018.01.106
  41. M. Irfan and A. Idris, "Overview of PES biocompatible/hemodialysis membranes: PES-blood interactions and modification techniques", Mater. Sci. Eng. C., 56, 574-592 (2015). https://doi.org/10.1016/j.msec.2015.06.035