DOI QR코드

DOI QR Code

Recent Development Based on 2D Composite Membrane for Pervaporation

투과증발을 위한 2차원 복합막 기반의 최근 개발

  • Seungwoo Ha (Nano Science and Engineering, Integrated Science and Engineering Division, Underwood International College, Yonsei University) ;
  • Rajkumar Patel (Energy and Environmental Science and Engineering, Integrated Science and Engineering Division, Underwood International College, Yonsei University)
  • 하승우 (연세대학교 언더우드국제대학 융합과학공학부 나노과학공학) ;
  • 라즈쿠마 파텔 (연세대학교 언더우드학부 융합과학공학부 에너지환경융합전공)
  • Received : 2023.08.13
  • Accepted : 2023.08.24
  • Published : 2023.08.31

Abstract

The increasing concerns for environmental pollution and depletion of natural resources have prompted the development of environmentally sustainable technologies. Pervaporation has garnered attention in recent decades due to its low energy consumption, environmental impact, and performance efficiency. This method has been used to separate chemical species and dehydrate organic solvents, as the membranes can be fine-tuned to fulfill the desired selectivity. Several separation processes, such as reverse osmosis and distillation, are being utilized in both experimental settings and industrial applications. However, pervaporation has several advantages, such as low operating pressure and temperature and a higher rejection rate. Nonetheless, the current state of membrane technology alone can't suffice the demands of practical applications. Composite membranes, on the other hand, can leverage the benefits of both organic and inorganic materials. Many studies have effectively incorporated inorganic nanomaterials such as graphene oxide (GO) and MXene (MX) in polymeric membranes to tackle the current limitations. This review investigates the recent development of 2D composite membranes in pervaporation and evaluates performance enhancement.

환경 오염과 천연 자원의 고갈에 대한 증가하는 우려는 환경적으로 지속 가능한 기술의 개발을 촉진했습니다. 퍼바포레이션은 낮은 에너지 소비, 환경 영향 및 성능 효율로 인해 최근 수십 년 동안 주목을 받아 왔습니다. 이 방법은 막이 원하는 선택도를 충족하도록 미세 조정될 수 있기 때문에 화학 종을 분리하고 유기 용매를 탈수하는 데 사용되었습니다. 역삼투 및 증류와 같은 여러 분리 공정은 실험 환경 및 산업 응용 분야에서 모두 활용되고 있습니다. 그러나 퍼바포레이션은 작동 압력 및 온도가 낮고 거부율이 높은 등 여러 이점이 있습니다. 그럼에도 불구하고, 현재 막 기술의 상태만으로는 실용적인 응용에 대한 요구를 충분하게 할 수 없습니다. 반면, 복합막은 유기 물질과 무기 물질의 장점을 모두 활용할 수 있습니다. 많은 연구들이 현재 한계를 해결하기 위해 그래핀 산화물(GO) 및 MXene (MX)과 같은 무기 나노 물질을 고분자 막에 효과적으로 통합했습니다. 이 검토는 투과증발에서의 2D 복합막의 최근 발전을 조사하고 성능 향상을 평가합니다.

Keywords

References

  1. J. Y. Lee, J. Y. Zhan, M. B. M. Y. Ang, S. C. Yeh, H. A. Tsai, and R. J. Jeng, "Improved performance of nanocomposite polyimide membranes for pervaporation fabricated by embedding spirobisindane structure-functionalized graphene oxide", Sep. Purif. Technol., 265, 118470 (2021).
  2. E. Halakoo and X. Feng, "Layer-by-layer assembly of polyethyleneimine/graphene oxide membranes for desalination of high-salinity water via pervaporation", Sep. Purif. Technol., 234, 16077 (2020).
  3. Z. Wang, J. Sun, N. Li, Y. Qin, X. Qian, and Z. Xie, "Tuning interlayer structure to construct steady dual-crosslinked graphene oxide membranes for desalination of hypersaline brine via pervaporation", Sep. Purif. Technol., 286, 120459 (2022).
  4. D. Kunnakorn, T. Rirksomboon, K. Siemanond, P. Aungkavattana, N. Kuanchertchoo, P. Chuntanalerg, K. Hemra, S. Kulprathipanja, R. B. James, and S. Wongkasemjit, "Techno-economic comparison of energy usage between azeotropic distillation and hybrid system for water-ethanol separation", Renew. Energy, 51, 310 (2013).
  5. F. Liang, J. Zheng, M. He, Y. Mao, G. Liu, J. Zhao, and W. Jin, "Exclusive and fast water channels in zwitterionic graphene oxide membrane for efficient water-ethanol separation", AIChE J., 67, e17215 (2021).
  6. X. Zhao, Z. Tong, X. Liu, J. Wang, and B. Zhang, "Facile preparation of polyamide-graphene oxide composite membranes for upgrading pervaporation desalination performances of hypersaline solutions", Ind. Eng. Chem. Res., 26, 12232 (2020).
  7. G. Liu, J. Shen, Q. Liu, G. Liu, J. Xiong, J. Yang, and W. Jin, "Ultrathin two-dimensional MXene membrane for pervaporation desalination", J. Membr. Sci., 548, 548 (2018).
  8. M. Dmitrenko, A. Chepeleva, V. Liamin, A. Kuzminova, A. Mazur, K. Semenov, and A. Penkova, "Novel PDMS-b-PPO membranes modified with graphene oxide for efficient pervaporation ethanol dehydration", Membranes, 12, 832 (2022).
  9. O. Gupta, S. Roy, L. Rao, and S. Mitra, "Graphene oxide-carbon nanotube (GO-CNT) hybrid mixed matrix membrane for pervaporative dehydration of ethanol", Membranes, 12, 1227 (2022).
  10. K. Guan, F. Liang, H. Zhu, J. Zhao, and W. Jin, "Incorporating graphene oxide into alginate polymer with a cationic intermediate to strengthen membrane dehydration performance", ACS Appl. Mater. Interfaces, 10, 13903 (2018).
  11. W. Cha-umpong, Q. Li, A. Razmjou, and V. Chen, "Concentrating brine for lithium recovery using GO composite pervaporation membranes", Desalination, 500, 114894 (2021).
  12. Y. K. Lin, V. H. Nguyen, J. C. C. Yu, C. W. Lee, Y. H. Deng, J. C. S. Wu, K. C. W. Wu, K. L. Tung, and C. L. Chen, "Biodiesel production by pervaporation-assisted esterification and pre-esterification using graphene oxide/chitosan composite membranes", J. Taiwan Inst. Chem. Eng., 79, 23 (2017).
  13. Y. Mao, M. Zhang, L. Cheng, J. Yuan, G. Liu, L. Huang, M. Barboiu, and W. Jin, "Bola-amphiphile-imidazole embedded GO membrane with enhanced solvent dehydration properties", J. Membr. Sci., 595, 117545 (2020).
  14. X. Qian, N. Li, Q. Wang, and S. Ji, "Chitosan/graphene oxide mixed matrix membrane with enhanced water permeability for high-salinity water desalination by pervaporation", Desalination, 438, 83 (2018).
  15. V. Boffa, H. Etmimi, P. E. Mallon, H. Z. Tao, G. Magnacca, and Y. Z. Yue, "Carbon-based building blocks for alcohol dehydration membranes with disorder-enhanced water permeability", Carbon, 118, 458 (2017).
  16. R. L. G. Lecaros, M. E. Bismonte, B. T. Doma, Jr., W.S. Hung, C. C. Hu, H. A. Tsai, S. H. Huang, K. R. Lee, and J. Y. Lai, "Alcohol dehydration performance of pervaporation composite membranes with reduced graphene oxide and graphene quantum dots homostructured filler", Carbon, 162, 318 (2020).
  17. S. Liang, Y. Song, Z. Zhang, B. Mu, R. Li, Y. Li, H. Yang, M. Wang, F. Pan, and Z. Jiang, "Construction of graphene oxide membrane through non-covalent cross-linking by sulfonated cyclodextrin for ultra-permeable butanol dehydration", J. Membr. Sci., 621, 118938 (2021).
  18. H. Tong, Q. Liu, N. Xu, Q. Wang, L. Fan, Q. Dong, and A. Ding, "Efficient pervaporation for ethanol dehydration: Ultrasonic spraying preparation of polyvinyl alcohol (PVA)/Ti3C2Tx nanosheet mixed matrix membranes", Membranes, 13, 430 (2023).
  19. H. Heydari, S. Salehian, S. Amiri, M. Soltanieh, and S. A. Musavi, "UV-cured polyvinyl alcohol-MXene mixed matrix membranes for enhancing pervaporation performance in dehydration of ethanol", Polym. Test., 123, 108046 (2023).
  20. Z. Xu, G. Liu, H. Ye, W. Jin, and Z. Cui, "Two-dimensional MXene incorporated chitosan mixed-matrix membranes for efficient solvent dehydration", J. Membr. Sci., 563, 625 (2018).
  21. G. Yang, Z. Xie, A. W. Thornton, C. M. Doherty, M. Ding, H. Xu, M. Cran, D. Ng, and S. Gray, "Ultrathin poly (vinyl alcohol)/MXene nanofilm composite membrane with facile intrusion-free construction for pervaporative separations", J. Membr. Sci., 614, 118490 (2020).
  22. W. Cai, X. Cheng, X. Chen, J. Li, and J. Pei, "Poly(vinyl alcohol)-modified membranes by Ti3C2Tx
  23. Y. Wu, L. Ding, Z. Lu, J. Deng, and Y. Wei, "Two-dimensional MXene membrane for ethanol dehydration", J. Membr. Sci., 590, 117300 (2019).