DOI QR코드

DOI QR Code

리튬황전지 양극재용 탄소 재료 전구체 나노웹의 탄화거동 연구

Carbonization Behavior of Carbonized Precursor Nano-webs for Li-Sulfur Battery Cathode

  • 강찬솔 (신한대학교 첨단소재공학과)
  • Chan Sol Kang (Department of Advanced Materials Engineering, Shinhan University)
  • 투고 : 2023.05.18
  • 심사 : 2023.06.13
  • 발행 : 2023.06.30

초록

In this study, the carbonized polybenzoxazole (C-PBO) nano-webs were made from PBO nano-web via the electro-spun polyhydroxyamide (PHA) nano-web by heating temperatures of 800-1200 ℃ for 1h under N2 atmosphere, respectively. XPS, EA, FT-IR, TGA, Raman spectra, electrical conductivity, and HR-TEM were used to observe the carbonization behavior in C-PBO nano-webs. XPS, EA, and FT-IR results displayed that PBO nano-web directly converted to C-PBO nano-webs above 800 ℃ without the stabilization process. TGA results showed that the C-PBO nano-webs have excellent thermal stability at high temperatures (~750 ℃) and can undergo the carbonization process to yield turbostratic graphite structure. Raman spectra observed the ID/IG of C-PBO nano-webs was improved on increasing the carbonization temperature.

키워드

과제정보

본 논문은 2022년도 신한대학교 학술연구비 지원으로 연구되었으며, 당 기관의 연구비 지원에 감사드립니다.

참고문헌

  1. G. Zhou, H. Chen, and Y. Cui, "Formulating Energy Density for Designing Practical Lithium-sulfur Batteries", Nat. Energy, 2022, 7, 312-319. https://doi.org/10.1038/s41560-022-01001-0
  2. E. Ismar, T. Karazehir, M. Ates, and A. S. Sarac, "Electrospun Carbon Nanofiber Web Electrode: Supercapacitor Behavior in Various Electrolytes", J. Appl. Polym. Sci., 2018, 135, 45723.
  3. M. S. Whittingham, "Ultimate Limits to Intercalation Reactions for Lithium Batteries", Chem. Rev., 2014, 114, 11414-11443. https://doi.org/10.1021/cr5003003
  4. C. Qu, Y. Chen, X. Yang, H. Zhang, X. Li, and H. Zhang, "LiNO3-free Electrolyte for Li-S battery: A Solvent of Choice with low Ksp of Polysulfde and Low Dendrite of Lithium", Nano Energy, 2017, 39, 262-272. https://doi.org/10.1016/j.nanoen.2017.07.002
  5. Z. P. Cano, D. Banham, S. Ye, A. Hintennach, J. Lu, M. Fowler, and Z. Chen, "Batteries and Fuel Cells for Emerging Electric Vehicle Markets", Nat. Energy, 2018, 3, 279-289. https://doi.org/10.1038/s41560-018-0108-1
  6. M. C. Argyrou, P. Christodoulides, and S. A. Kalogirou, "Energy Storage for Electricity Generation and Related Processes: Technologies Appraisal and Grid Scale Applications", Renew. Sustain. Energy Rev., 2018, 94, 804-821. https://doi.org/10.1016/j.rser.2018.06.044
  7. F. Duffner, M. Wentker, M. Greenwood, and J. Leker, "Battery Cost Modeling: A Review and Directions for Future Research", Renew. Sustain. Energy Rev., 2020, 127, 109872.
  8. C. Yang, "Running Battery Electric Vehicles with Extended Range: Coupling Cost and Energy Analysis", Appl. Energy, 2022, 306, 118116.
  9. J. Jin and A. A. Ogale, "Carbon Fibers Derived from Wet-spinning of Equi-component Lignin/polyacrylonitrile Blends", J. Appl. Polym. Sci., 2018, 135, 45903.
  10. C. S. Kang, "Effect of Heat-Treatment on Carbonization Behavior of Hetero-cyclic Aromatic Polymers for Carbon Material Precursors", Text. Sci. Eng., 2020, 57, 133-142.
  11. X. Lin, C. Wang, M. Yu, Z. Lin, and Y. Liu, "Study on the Relationships of Mechanical Performance with the Short-range and Long-range Structure of 500-900℃ Carbonized Fiber", J. Indus. Text., 2015, 45, 33-47. https://doi.org/10.1177/1528083714521072
  12. I. Karakan and L. Erzurumluoglu, "Formation of Non-graphitizing Carbon Fibers Prepared from Poly(p-phenylene terephthalamide) Precursor Fibers", Fiber. Polym., 2015, 16, 961-974. https://doi.org/10.1007/s12221-015-0961-5
  13. K. H. Jung and J. P. Ferraris, "Preparation and Electrochemical Properties of Carbon Nanofibers Derived from Polybenzimidazole/polyimide Precursor Blends", Carbon, 2012, 50, 5309-5315. https://doi.org/10.1016/j.carbon.2012.07.019
  14. G. S. Chung, S. M. Jo, and B. C. Kim, "Properties of Carbon Nanofibers Prepared from Electrospun Polyimide", J. Appl. Polym. Sci., 2005, 97, 165-170. https://doi.org/10.1002/app.21742
  15. N. Yoshizawa, H. Hatori, K. Yoshikawa, K. Miura, and T. Abe, "TEM Observation of Heterogeneous Polyhedronization Behavior in Graphitized Carbon Nanospheres", Mat. Sci. Eng. B, 2008, 148, 245-248. https://doi.org/10.1016/j.mseb.2007.09.032
  16. M. B. Vazquez-Santos, E. Geissler, K. Laszlo, J. N. Rouzaud, A. Martinez-Alonso, and J. M. Tascon, "Graphitization of Highly Porous Carbons Derived from Poly(p-phenylene benzobisoxazole)", Carbon, 2012, 50, 2929-2940. https://doi.org/10.1016/j.carbon.2012.02.062
  17. M. Jing, C. G. Wang, Q. Wang, Y. J. Bai, and B. Zhu, "Chemical Structure Evolution and Mechanism During Pre-carbonization of PAN-based Stabilized Fiber in the Temperature Range of 350-600 ℃", Polym. Degra. Stab., 2007, 92, 1737-1742. https://doi.org/10.1016/j.polymdegradstab.2007.05.020
  18. C. S. Kang, C. W. Park, M. H. Jee, M. J. Paik, and D. H. Baik, "Synthesis and Thermal Properties of Polyhydroxyamide Copolymer and Its Derivatives", Fiber. Polym., 2016, 17, 657-662. https://doi.org/10.1007/s12221-016-6207-3
  19. C. S. Kang, M. H. Jee, M. J. Yeo, and D. H. Baik, "Effects of Drawing and Heat-Treatment Conditions on the Structure and Mechanical Properties of Polyhydroxyamide and Polybenzoxazole Fibers", Fiber. Polym., 2018, 19, 1626-1631. https://doi.org/10.1007/s12221-018-8241-9
  20. Q. Gao, F. Qu, W. Zheong, and H. Lin, "A Simple Method to Synthesize Graphitic Mesoporous Carbon Materials with Different Structures", J. Porous. Mater., 2013, 20, 983-988. https://doi.org/10.1007/s10934-013-9677-3
  21. K. A. Trick and T. E. Saliba, "Mechanisms of the Pyrolysis of Phenolic Resin in a Carbon/phenolic Composite", Carbon, 1995, 33, 1509-1515. https://doi.org/10.1016/0008-6223(95)00092-R
  22. F. Tuinstra and J. L. Koeing, "Raman Spectrum of Graphite", J. Chem. Phys., 1970, 53, 1126-1130. https://doi.org/10.1063/1.1674108
  23. C. L. Liu, W. S. Dong, J. R. Song, and L. Liu, "Evolution of Microstructure and Properties of Phenolic Fibers during Carbonization", Mat. Sci. Eng. A, 2007, 459, 347-354. https://doi.org/10.1016/j.msea.2007.02.067
  24. S. Chen, D. Han, and H. Hou, "High Strength Electrospun Fibers", Polym. Advanc. Tech., 2011, 22, 295-303. https://doi.org/10.1002/pat.1864