Acknowledgement
이 논문은 정부 (과학기술정보통신부)의 재원으로 한국연구재단의 지원을 받아 수행된 연구임 (No. 2022R1F1A1060231).
References
- W. Ahmad, A. Rasool, A. R. Javed, T. Baker, Z. Jalil, "Cyber Security in Iot-based Cloud Computing: A Comprehensive Survey," Electronics, Vol. 11, No. 1, pp. 16, 2022.
- M. Ham, J. Moon, G. Lim, J. Jung, H. Ahn, W. Song, S. Woo, P. Kapoor, D. Chae, G. Jang, Y. Ahn, J. Lee, "NNStreamer: Efficient and Agile Development of On-Device AI Systems," Proc. of the IEEE/ACM International Conference on Software Engineering: Software Engineering in Practice (ICSE-SEIP), pp. 198-207, 2021.
- S. Dhar, J. Guo, J. Liu, S. Tripathi, U. Kurup, M. Shah, "A Survey of On-device Machine Learning: An Algorithms and Learning Theory Perspective," ACM Transactions on Internet of Things, Vol. 2, No. 3, pp. 1-49, 2021. https://doi.org/10.1145/3450494
- D. Kong, "Science Driven Innovations Powering Mobile Product: Cloud AI vs. Device AI Solutions on Smart Device," arXiv preprint arXiv:1711.07580, 2017.
- "Nvidia Embedded Systems for Next-Gen Autonomous Machines," NVIDIA. [Online]. Available: https://www.nvidia.com/en-us/autonomous-machines/embedded-systems/. [Accessed: 30-Jan-2023].
- "Edge TPU - run Inference at the Edge | Google Cloud," Google. [Online]. Available: https://cloud.google.com/edge-tpu. [Accessed: 30-Jan-2023].
- W. Vijitkunsawat, P. Chantngarm, "Comparison of Machine Learning Algorithm's on Self-driving Car Navigation Using Nvidia Jetson Nano," Proc. of the International Conference on Electrical Engineering/Electronics, Computer, Telecommunications and Information Technology (ECTI-CON), pp. 201-204, 2020.
- A. Basulto-Lantsova, J. A. Padilla-Medina, F. J. Perez-Pinal, A. I. Barranco-Gutierrez, "Performance comparative of OpenCV Template Matching method on Jetson TX2 and Jetson Nano Developer Kits," Proc. of the Annual Computing and Communication Workshop and Conference (CCWC), pp. 0812-0816, 2020.
- K. Alibabaei, E. Assuncao, P. D. Gaspar, V. N. Soares, J. M. Caldeira, "Real-Time Detection of Vine Trunk for Robot Localization Using Deep Learning Models Developed for Edge TPU Devices," Future Internet, Vol. 14, No. 7, pp. 199, 2022.
- Y. H. Tseng, S. S. Jan, "Combination of Computer Vision Detection and Segmentation for Autonomous Driving," Proc. of the IEEE/ION Position, Location and Navigation Symposium (PLANS), pp. 1047-1052, 2018.
- M. Bojarski, D. D. Testa, D. Dworakowski, B. Firner, B. Flepp, P. Goyal, L. D. Jackel, M. Monfort, U. Muller, J. Zhang, X. Zhang, J. Zhao, K. Zieba, "End to end Learning for Self-driving Cars," arXiv preprint arXiv:1604.07316, 2016.
- D. N. N. Tran, H. H. Nguyen, L. H. Pham, J. W. Jeon, "Object Detection with Deep Learning on Drive PX2," Proc. of the IEEE International Conference on Consumer Electronics-Asia (ICCE-Asia), pp. 1-4, 2020.
- K. He, X. Zhang, S. Ren, J. Sun, "Deep Residual Learning for Image Recognition," Proc. of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 770-778, 2016.
- M. Tan, Q. Le, "Efficientnet: Rethinking Model Scaling for Convolutional Neural Networks," Proc. of the International Conference on Machine Learning, pp. 6105-6114,
- A. Howard, M. Sandler, G. Chu, L. C. Chen, B. Chen, M. Tan, W. Wang, Y. Zhu, R. Pang, V. Vasudevan, Q. V. Le, H. Adam, "Searching for Mobilenetv3," Proc. of the IEEE/CVF International Conference on Computer Vision, pp. 1314-1324, 2019.
- A. Dosovitskiy, L. Beyer, A. Kolesnikov, D. Weissenborn, X. Zhai, T. Unterthiner, M. Dehghani, M. Minderer, G. Heigold, S. Gelly, J. Uszkoreit, N. Houlsby, "An Image is Worth 16x16 Words: Transformers for Image Recognition at Scale," arXiv preprint arXiv:2010.11929, 2020.
- M. Wortsman, G. Ilharco, S. Y. Gadre, R. Roelofs, R. Gontijo-Lopes, A. S. Morcos, H. Namkoong, A. Farhadi, Y. Carmon, S. Kornblith, L. Schmidt, "Model Soups: Averaging Weights of Multiple Fine-tuned Models Improves Accuracy Without Increasing Inference Time," Proc. of the International Conference on Machine Learning, pp. 23965-23998, 2022.
- X. Zhai, A. Kolesnikov, N. Houlsby, L. Beyer, "Scaling Vision Transformers," Proc. of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 12104-12113, 2022.
- H. Bao, L. Dong, S. Piao, F. Wei, "Beit: Bert Pre-training of Image Transformers," arXiv preprint arXiv:2106.08254, 2021.
- Z. Liu, Y. Wang, K. Han, W. Zhang, S. Ma, W. Gao, "Post-training Quantization for Vision Transformer," Advances in Neural Information Processing Systems, Vol. 34, pp. 28092-28103, 2021.
- Y. Tang, K. Han, Y. Wang, C. Xu, J. Guo, C. Xu, D. Tao, "Patch Slimming for Efficient Vision Transformers," Proc. of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 12165-12174, 2022.
- L. Song, S. Zhang, S. Liu, Z. Li, X. He, H. Sun, J. Sun, N. Zheng, "Dynamic Grained Encoder for Vision Transformers," Advances in Neural Information Processing Systems, Vol. 34, pp. 5770-5783, 2021.
- B. Chen, P. Li, B. Li, C. Li, L. Bai, C. Lin, M. Sun, J. Yan, W. Ouyang, "Psvit: Better Vision Transformer Via Token Pooling and Attention Sharing," arXiv preprint arXiv:2108.03428, 2021.
- B. Graham, A. El-Nouby, H. Touvron, P. Stock, A. Joulin, H. Jegou, M. Douze, "Levit: A Vision Transformer in Convnet's Clothing for Faster Inference," Proc. of the IEEE/CVF International Conference on Computer Vision, pp. 12259-12269, 2021.
- S. Mehta, M. Rastegari, "Mobilevit: Light-weight, General-purpose, and Mobile-friendly Vision Transformer," arXiv preprint arXiv:2110.02178, 2021.
- O. Russakovsky, J. Deng, H. Su, J. Krause, S. Satheesh, S. Ma, Z. Huang, A. Karpathy, A. Khosla, M. Bernstein, A. C. Berg, L. Fei-Fei, "Imagenet Large Scale Visual Recognition Challenge," International Journal of Computer Vision, Vol. 115, pp. 211-252, 2015. https://doi.org/10.1007/s11263-015-0816-y
- H. Touvron, M. Cord, M. Douze, F. Massa, A. Sablayrolles, H. Jegou, "Training Data-efficient Image Transformers & Distillation Through Attention," Proc. of the International Conference on Machine Learning, pp. 10347-10357, 2021.
- B. Pan, R. Panda, Y. Jiang, Z. Wang, R. Feris, A. Oliva, "IA-RED2: Interpretability-Aware Redundancy Reduction for Vision Transformers," Advances in Neural Information Processing Systems, Vol. 34, pp. 24898-24911, 2021.
- A. Ignatov, R. Timofte, W. Chou, K. Wang, M. Wu, T. Hartley, L. V. Gool, "Ai Benchmark: Running Deep Neural Networks on Android Smartphones," Proc. of the European Conference on Computer Vision (ECCV) Workshops, pp. 0-0, 2018.
- A. Ignatov, R. Timofte, A. Kulik, S. Yang, K. Wang, F. Baum, M. Wu, L. Xu, L. V. Gool, "Ai Benchmark: All About Deep Learning on Smartphones in 2019," Proc. of the IEEE/CVF International Conference on Computer Vision Workshop (ICCVW), pp. 3617-3635, 2019.
- A. A. Suzen, B. Duman, B. Sen, "Benchmark Analysis of Jetson tx2, Jetson Nano and Raspberry pi Using Deep-cnn," Proc. of the International Congress on Human-Computer Interaction, Optimization and Robotic Applications (HORA), pp. 1-5, 2020.
- P. Kang, J. Jo, "Benchmarking Modern Edge Devices for Ai Applications," IEICE TRANSACTIONS on Information and Systems, Vol. 104, No. 3, pp. 394-403, 2021. https://doi.org/10.1587/transinf.2020EDP7160
- X. Wang, L. L. Zhang, Y. Wang, M. Yang, "Towards Efficient Vision Transformer Inference: A First Study of Transformers on Mobile Devices," Proc. of the Annual International Workshop on Mobile Computing Systems and Applications, pp. 1-7, 2022.
- T. Xiao, M. Singh, E. Mintun, T. Darrell, P. Dollar, R. Girshick, "Early Convolutions Help Transformers See Better," Advances in Neural Information Processing Systems, Vol. 34, pp. 30392-30400, 2021.
- M. Sandler, A. Howard, M. Zhu, A. Zhmoginov, L.-C. Chen, "Mobilenetv2: Inverted Residuals and Linear Bottlenecks," Proc. of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 4510-4520, 2018.
- "Higher Accuracy on Vision Models with EfficientNet-Lite," The TensorFlow Blog. [Online]. Available: https://blog.tensorflow.org/2020/03/higher-accuracy-on-vision-models-with-efficientnet-lite.html. [Accessed: 30-Jan-2023].
- R. Wightman, PyTorch Image Models. GitHub, 2019. doi: 10.5281/zenodo.4414861.
- Raspberry Pi, "Raspberry pi 4 Model B Specifications," Raspberry Pi. [Online]. Available: https://www.raspberrypi.com/products/raspberry-pi-4-model-b/specifications/. [Accessed: 30-Jan-2023].
- "CUDA Toolkit Documentation," CUDA Toolkit Documentation v12.0 - landing 12.0 documentation, 09-Dec-2022. [Online]. Available: https://docs.nvidia.com/cuda/index.html. [Accessed: 30-Jan-2023].
- "Jetson Nano Developer Kit," NVIDIA Developer, 28-Sep-2022. [Online]. Available: https://developer.nvidia.com/embedded/jetson-nano-developer-kit. [Accessed: 30-Jan-2023].
- "EdgeTPU USB Accelerator," Coral. [Online]. Available: https://coral.ai/products/accelerator/. [Accessed: 30-Jan-2023].
- "Tensorflow," TensorFlow. [Online]. Available: https://www.tensorflow.org/. [Accessed: 30-Jan-2023].
- "Tensorflow Lite," TensorFlow. [Online]. Available: https://www.tensorflow.org/lite/guide. [Accessed: 30-Jan-2023].
- "TensorFlow-TensorRT (TF-TRT)," NVIDIA Documentation Center. [Online]. Available: https://docs.nvidia.com/deeplearning/frameworks/tf-trt-user-guide/index.html. [Accessed: 30-Jan-2023].
- "Edge Tpu Compiler," Coral. [Online]. Available: https://coral.ai/docs/edgetpu/compiler/. [Accessed: 30-Jan-2023].
- T. Sheng, C. Feng, S. Zhuo, X. Zhang, L. Shen, M. Aleksic, "A Quantization-friendly Separable Convolution for Mobilenets," Proc. of the Workshop on Energy Efficient Machine Learning and Cognitive Computing for Embedded Applications (EMC2), pp. 14-18, 2018.