DOI QR코드

DOI QR Code

노후 PSC 구조물의 잔여 긴장 응력 진단을 위한 외부 자화 EM 기법 검증

Verification of External Magnetization based EM Technique for Diagnosing Residual Tensile Stress in Aged PSC Structures

  • 박순전 (고려대학교 건축사회환경공학부 ) ;
  • 박세환 (차세대융합기술연구원 인프라안전진단연구실) ;
  • 최재훈 (차세대융합기술연구원 인프라안전진단연구실) ;
  • 전교영 (롯데건설(주) 기술연구원 ) ;
  • 김준경 (차세대융합기술연구원 인프라안전진단연구실)
  • Soon-Jeon Park (Department of Civil, Environmental and Architectural Engineering, Korea University) ;
  • Sehwan Park (Safety Inspection for Infrastructure Lab.,Advanced Institute of Convergence Technology) ;
  • Jaehoon Choi (Safety Inspection for Infrastructure Lab., Advanced Institute of Convergence Technology) ;
  • Kyo-Young Jeon (R&D Institute, LOTTE E&C) ;
  • Junkyeong Kim (Safety Inspection for Infrastructure Lab., Advanced Institute of Convergence Technology)
  • 투고 : 2023.06.19
  • 심사 : 2023.07.18
  • 발행 : 2023.08.31

초록

본 연구는 현재 가설되어 가용 중인 프리스트레스트 구조물에 대해서 긴장 응력을 계측하는 방법에 관한 연구를 위해 외부 자화를 이용한 PSC 텐던의 긴장 응력 계측에 관한 연구를 진행하였다. 이에 유한요소해석을 이용하여 PSC 거더에 외부 자화 시 잔존 긴장 응력을 검출하기 위해 PSC 거더 내부의 PS 텐던까지 영향을 줄 수 있는 코일 배치 및 크기 등을 고려하여 최적의 센서를 설계하였다. 또한, 유한요소해석을 이용하여 설계한 센서와 동일한 수치 및 재질 데이터를 이용해 이론적 검증을 진행하였으며 타겟 위치에서 자화의 세기를 계산하였을 때, 유한요소해석 결과와 동일한 결과를 얻어낼 수 있었다. 이를 통해 설계한 센서의 검증 및 비 접촉 외부 자화 EM 센서를 활용하여 PSC I형 거더 내부 텐던의 자화가 가능함을 확인하였다.

This study entailed an investigation of a tensile stress measurement method for prestressed concrete (PSC) tendons by utilizing external magnetization. The target of this study are PS structures that have been constructed and in use. An optimal external magnetization based elasto-magnetic (EM) sensor was designed using finite element analysis considering various factors, such as coil arrangement and size, that could influence the PS tendons inside the PSC girder. The residual tensile stress resulting from the external magnetization of the girder was then determined. Further, theoretical verification was performed using the numerical and material data used in the finite element analysis for sensor design. The calculated values of strength of magnetization at the target location were matched with the finite element analysis results. Thus, the designed sensor and the feasibility of magnetizing the tendons inside the PSC I-girder using an EM sensor were validated.

키워드

과제정보

이 성과는 해양수산부 지원으로 수행된 '항만인프라 재해 및 노후화 관리기술개발'(20210603) 및 정부(과학기술정보통신부)의 재원으로 한국연구재단의 지원(No. NRF-2020R1C1C1004437)을 받아 수행되었습니다.

참고문헌

  1. Choi, B.H., Kim, J.H., Cheon, J.P., Rim, C.T. (2016) Synthesized Magnetic Field Focusing Using a Current-Controlled Coil Array, IEEE Magnetics Letters, 7, pp.1~4. https://doi.org/10.1109/LMAG.2016.2520903
  2. Halvonik, J., Dolnak, J., Borzovic, V. (2013) Long-Term Losses of Prestress in Precast Members Cast from HPC, Procedia Eng., 65, pp.81~86.
  3. Im, B.H., Jang, J.B., Lee, H.P., Lee, I.K. (2012) Estimation of Prestressed Tension on Grouted PSC Tendon Using Measured Elastic Wave Velocity, KSCE J. Civil & Environ. Eng. Res., 32(5), pp. 289~297.
  4. Kim, J., Kim, J.W., Park, S. (2019) Investigation of Applicability of an Embedded EM Sensor to Measure the Tension of a PSC Girder, J. Sens., 2019, p.2469647.
  5. Kim, J., Park, S . (2020) Field Applicability of a Machine Learning-based Tensile Force Estimation for Fre-Stressed Concrete Bridges using an Embedded Elasto-Magnetic Sensor, Struct. Health Monitoring, 19(1), pp.281~292. https://doi.org/10.1177/1475921719842340
  6. Kim, S., Park, Y., Park, S., Cho, K., Cho, J.R. (2015) A Sensor-Type PC Strand with an Embedded FBG Sensor for Monitoring Prestress Forces, Sens., 15(1), pp.1060~1070. https://doi.org/10.3390/s150101060
  7. Kim, S.H., Park, S.Y., Kim, S.T., Jeon, S.J. (2022) Analysis of Short-Term Prestress Losses in Post-tensioned Structures Using Smart Strands, Int. J. Concr. Struct. & Mater., 16(1), pp.1~5. https://doi.org/10.1186/s40069-021-00488-3
  8. Le, T.C., Phan, T.T., Nguyen, V., Ho, T.H., D.D., Huynh, T.C. (2021) A Low-Cost Prestress Monitoring Method for Post-Tensioned RC Beam Using Piezoelectric-Based Smart Strand, Build., 11(10), p.431.
  9. Li, H., Li, J., Xin, Y., Hao, H., Le, T.D., Pham, T.M. (2022) Prestress Force Monitoring and Quantification of Precast Segmental Beams through Neutral Axis Location Identification, Appl. Sci., 12(5), p.2756.
  10. S hen, S ., Wang, Y., Ma, S .L., Huang, D., Wu, Z.H., Guo, X. (2018) Evaluation of Prestress Loss Distribution during Pre-Tensioning and Post-Tensioning Using Long-Gauge Fiber Bragg Grating Sensors, Sens., 18(12), p.4106.
  11. Tadros, M.K., Omaishi, N.A., Seguirant, S.J., Gallt, J.G. (2001) Prestress Losses in Pretensioned High-Strength Concrete Bridge Girders, Transportation Research Board, NCHRP Report, No. 496.
  12. Yao, Y., Yan, M., Bao, Y. (2021) Measurement of Cable Forces for Automated Monitoring of Engineering Structures using Fiber Optic Sensors: A Review, Autom. Constr., 126, p.103687.
  13. Zhang, S., Zhang, H., Zhou, J., Liu, H., Ma, H., Liao, L. (2022) Alternating Prestress Monitoring of Steel Strands based on the Magnetoelastic Inductance Method, Measurement, 194, p.111024.