• Title/Summary/Keyword: EM sensor

Search Result 78, Processing Time 0.024 seconds

Embedded EM Sensor for Tensile Force Estimation of PS tendon of PSC Girder (PS 긴장재 긴장력 계측을 위한 PSC 거더 내부 매립용 EM 센서)

  • Park, Jooyoung;Kim, Junkyeong;Zhang, Aoqi;Lee, Hwanwoo;Park, Seunghee
    • Journal of the Computational Structural Engineering Institute of Korea
    • /
    • v.28 no.6
    • /
    • pp.691-697
    • /
    • 2015
  • In this paper, an embedded EM sensor was researched to estimate prestressing force of PS tendon in PSC girder. Recent methodologies for managing prestressing force loss were staying on verifying a applying prestressing force under construction, namely the loss management can not be controlled after construction. To estimate the tensile force of PS tendon during lifetime of PSC girder, this research proposed a bobbin-type embedded EM sensor that can be embedded in PSC girder is designed and fabricated considering the shape properties of anchorage zone and sheath. To verify the proposed sensor, a small PSC girder test was performed. The embedded EM sensor was connected to a sheath and anchor block, and the concrete was poured. After curing, the change of the permeability of PS tendon under tensile forces of 200, 710, 1070, 1300kN was measured using embedded EM sensor. The permeability of PS tendon had decreased according to the increment of applied tensile force. Also it is confirmed that the change of permeability due to applied tensile force could resolve the applied tensile force values. As a result, proposed embedded EM sensor could be embed into the PSC girder and it could be used to estimate the tensile force variation during lifetime of PSC girder.

A Study on Sensor Motion-Induced Noise Reduction for Developing a Moving Transient Electromagnetic System (이동하면서 측정할 수 있는 시간영역전자탐사 시스템 개발을 위한 센서흔들림유도잡음 제거 연구)

  • Hwang, Hak Soo;Lee, Sang Kyu
    • Economic and Environmental Geology
    • /
    • v.31 no.1
    • /
    • pp.53-57
    • /
    • 1998
  • Transient electromagnetic (TEM) method is also affected by cultural and natural electromagnetic (EM) noises, since it uses part of the broadband ($10^{-2}$ to $10^5Hz$) spectrum. Especially, predominant EM noise which affects a moving transmitter-receiver TEM system is sensor motion-induced noise. This noise is caused by the sensor motion in the earth magnetic field. The technique for reducing the sensor motion-induced EM noise presented in this paper is based on Halverson stacking. This Halverson stacking is generally used in a time-domain induced polarisation (IP) system to reject DC offset and linear drift. According to spectrum analysis of the vertical component of sensor motion-induced noise, the frequency range affected by the motion of an EM sensor is less than about 700 Hz in this study. With the decrease of the frequency, the spectral power caused by the motion of a sensor increases. For example, at the frequency of 200 Hz, the spectral power of the sensor motion-induced noise is $-90dBVrms^2$ while the spectral power of the EM noise measured with a fixed sensor on the ground is $-105dBVrms^2$, and at the frequency of 100 Hz, the spectral power of the sensor motion-induced noise is $-70dBVrms^2$ while the spectral power of the EM noise measured with a fixed sensor on the ground is $-105dBVrms^2$. With applying Halverson stacking to an artificial noise transient generated by adding a noise-free transient to sensor motion-induced noise measured without pulsing, it is shown that the filtered transient is nearly consistent with the noise-free transient within a delay time of $0.5{{\mu}sec}$. The inversion obtained from this filtered transient is in accord with the true model with an error of 5%.

  • PDF

Implementation of an Inductively Coupled EM Probe System for PD Diagnosis

  • Kim, Hee-Dong;Park, Noh-Joon;Park, Dae-Hee
    • Journal of Electrical Engineering and Technology
    • /
    • v.6 no.1
    • /
    • pp.111-118
    • /
    • 2011
  • In recent years, various types of partial discharge (PD) methods such as capacitive, inductive, electromagnetic, and acoustic coupling techniques have been developed for diagnosing rotating machines. An electromagnetic (EM) probe, which is an inductively coupled type of sensor, is required for detecting corona and internal discharges during off-line tests. In this study, a new technique for enhancing the measurement sensitivities for corona and internal discharge based on an EM inductive position sensor is proposed. An EM probe that winds wires around horseshoe-shaped and cylindershaped ferrites as helices is designed and optimized for the implementation of off-line PD monitoring of the stator winding of a rotating machine. The measurement system based on this design is implemented, and it is verified from the results of the experiment performed in this study that the probe provides similar performance as existing commercial products.

Verification of External Magnetization based EM Technique for Diagnosing Residual Tensile Stress in Aged PSC Structures (노후 PSC 구조물의 잔여 긴장 응력 진단을 위한 외부 자화 EM 기법 검증)

  • Soon-Jeon Park;Sehwan Park;Jaehoon Choi;Kyo-Young Jeon;Junkyeong Kim
    • Journal of the Computational Structural Engineering Institute of Korea
    • /
    • v.36 no.4
    • /
    • pp.251-257
    • /
    • 2023
  • This study entailed an investigation of a tensile stress measurement method for prestressed concrete (PSC) tendons by utilizing external magnetization. The target of this study are PS structures that have been constructed and in use. An optimal external magnetization based elasto-magnetic (EM) sensor was designed using finite element analysis considering various factors, such as coil arrangement and size, that could influence the PS tendons inside the PSC girder. The residual tensile stress resulting from the external magnetization of the girder was then determined. Further, theoretical verification was performed using the numerical and material data used in the finite element analysis for sensor design. The calculated values of strength of magnetization at the target location were matched with the finite element analysis results. Thus, the designed sensor and the feasibility of magnetizing the tendons inside the PSC I-girder using an EM sensor were validated.

Underwater Localization using EM Wave Attenuation with Depth Information (전자기파의 감쇠패턴 및 깊이 정보 취득을 이용한 수중 위치추정 기법)

  • Kwak, Kyungmin;Park, Daegil;Chung, Wan Kyun;Kim, Jinhyun
    • The Journal of Korea Robotics Society
    • /
    • v.11 no.3
    • /
    • pp.156-162
    • /
    • 2016
  • For the underwater localization, acoustic sensor systems are widely used due to greater penetration properties of acoustic signals in underwater environments. On the other hand, the good penetration property causes multipath and interference effects in structured environment too. To overcome this demerit, a localization method using the attenuation of electro-magnetic(EM) waves was proposed in several literatures, in which distance estimation and 2D-localization experiments show remarkable results. However, in 3D-localization application, the estimation difficulties increase due to the nonuniform (doughnut like) radiation pattern of an omni-directional antenna related to the depth direction. For solving this problem, we added a depth sensor for improving underwater 3D-localization with the EM wave method. A micro scale pressure sensor is located in the mobile node antenna, and the depth data from the pressure sensor is calibrated by the curve fitting algorithm. We adapted the depth(z) data to 3D EM wave pattern model for the error reduction of the localization. Finally, some experiments were executed for 3D localization with the fast calculation and less errors.

A development of $LiNbO_3$ probe sensor for detecting partial discharge (부분방전 전계 측정용 $LiNbO_3$ 프루브 센서 제작)

  • Kang, W.J.;Chang, Y.M.;Koo, J.Y.
    • Proceedings of the KIEE Conference
    • /
    • 1999.11d
    • /
    • pp.1041-1043
    • /
    • 1999
  • In this work, a possible new PD detection technique, based on the electro-optic effect, has been proposed. A proto-type probe sensor for detection partial discharge is made by $LiNbO_3$ Pockels cell, diachroic sheet polarizer and right-angle prism. The Mach-Zehnder interferometer system is proposed by using this sensor and this system is applied to detecting high electric field. we show the characteristic of the proto-type probe sensor and the design of a proposed probe type sensor.

  • PDF

Prestressing Loss Management for PSC Girder Tendon Based on EM Sensing (EM센서를 활용한 PSC 텐던 긴장력 손실 관리)

  • Kim, Junkyeong;Park, Jooyoung;Zhang, Aoqi;Lee, Hwanwoo;Park, Seunghee
    • Journal of the Computational Structural Engineering Institute of Korea
    • /
    • v.28 no.4
    • /
    • pp.369-374
    • /
    • 2015
  • In this paper, an EM sensing based prestressing force estimation method is proposed, in which it can estimate tensile force of PS tendon for PSC girder. The PSC girder has more improved performance than the general concrete girder by introducing the prestressing to the concrete. Thus the PSC girder bridge is widely constructed due to its high performance and low cost. However, the prestressing force has not been managed nevertheless it is major factor for the maintenance of the PSC girder bridge. The prestressing force was just measured during construction using jacking device and after that, it can not be managed. For this reason, this paper proposes a tensile force estimation method of PS tendon based on EM sensor. The permeability of ferroelectric material is changed according to the induced stress to the material, in which it can be measured using EM sensor. To measure the permeability of PS tendon, the EM sensor was fabricated and verified by performing the MTS test. The test was performed using 7-wire steel tendon under the 0, 40, 80, 120, 160, 200 KN of tensile force. The permeability of PS tendon was gradually decreased according to the increasement of tensile force. The regression method was used to find the relation between permeability and stress. As a result, the permeability has linear relation with the tensile force of PS tendon and the pre-stressing force can be estimated by the derived estimation equation.

24 GHz Microstrip Patch Array Antenna for High Sensitivity EM Sensor (고감도 EM 센서용 24 GHz 마이크로스트립 패치 배열 안테나)

  • Jung, Young-Bae;Jung, Chang-Won
    • The Journal of Korean Institute of Electromagnetic Engineering and Science
    • /
    • v.21 no.10
    • /
    • pp.1116-1120
    • /
    • 2010
  • Low cost patch array antenna for high sensitivity electromagnetic(EM) sensor is presented. The operating frequency band of the antenna is 24.05~24.25 GHz. Array structure is the symmetrical pattern by Chebyshev polynomial and the feed point is located in the middle of the array. Also, the gain of the array antenna can be increased by the side wings which are connected with the ground plane. It is proved through simulation and the measurement results that the operating frequency and the side-lobe level(SLL) are rarely changed when the inclined angle of the side wings is varied.

The Study of Direction Finding Algorithms for Coherent Multiple Signals in Uniform Circular Array (등각원형배열을 고려한 코히어런트 다중신호 방향탐지 기법 연구)

  • Park, Cheol-Sun;Lee, Ho-Joo;Jang, Won
    • Journal of the Korea Institute of Military Science and Technology
    • /
    • v.12 no.1
    • /
    • pp.97-105
    • /
    • 2009
  • In this paper, the performance of AP(Alternating Projection) and EM(Expectation Maximization) algorithms is investigated in terms of detection of multiple signals, resolvability of coherent signals and the efficiency of sensor array processing. The basic idea of these algorithms is utilization of relaxation technique of successive 1D maximization to solve a direction finding problem by maximizing the multidimensional likelihood function. It means that the function is maximized over only for a single parameter while the other parameters are fixed at each step of the iteration. According to simulation results, the algorithms showed good performance for both incoherent and coherent multiple signals. Moreover, some advantages are identified for direction finding with very small samples and fast convergence. The performance of AP algorithm is compared with that of EM using multiple criteria such as the number of sensor, SNR, the number of samples, and convergence speed over uniform circular array. It is resulted AP algorithm is superior to EM overally except for one criterion, convergence speed. Especially, for EM algorithm there is no performance difference between incoherent and coherent case. In conclusion, AP and EM are viable and practical alternatives, which can be applied to a direction under due to the resolvability of multi-path signals, reliable performance and no troublesome eigen-decomposition of the sample-covariance matrix.

Field application of elasto-magnetic stress sensors for monitoring of cable tension force in cable-stayed bridges

  • Yim, Jinsuk;Wang, Ming L.;Shin, Sung Woo;Yun, Chung-Bang;Jung, Hyung-Jo;Kim, Jeong-Tae;Eem, Seung-Hyun
    • Smart Structures and Systems
    • /
    • v.12 no.3_4
    • /
    • pp.465-482
    • /
    • 2013
  • Recently, a novel stress sensor, which utilizes the elasto-magnetic (EM) effect of ferromagnetic materials, has been developed to measure stress in steel cables and wires. In this study, the effectiveness of this EM based stress sensors for monitoring of the cable tension force of a real scale cable-stayed bridge was investigated. Two EM stress sensors were installed on two selected multi-strand cables in Hwa-Myung Bridge, Busan, South Korea. Conventional lift-off test was conducted to obtain reference cable tension forces of two test cables. The reference forces were used to calibrate and validate cable tension force measurements from the EM sensors. Tension force variations of two test cables during the second tensioning work on Hwa-Myung Bridge were monitored using the EM sensors. Numerical simulations were conducted to compare and verify the monitoring results. Based on the results, the effectiveness of EM sensors for accurate field monitoring of the cable tension force of cable-stayed bridge is discussed.