DOI QR코드

DOI QR Code

펨토초 레이저를 이용한 식품포장 필름의 표면 패터닝 및 특성

Surface Patterning and Characterization of Food Packaging Films Using Femtosecond Laser

  • 조영진 (한국식품연구원 안전유통연구단)
  • Youngjin Cho (Food Safety and Distribution Research Group, Korea Food Research Institute)
  • 투고 : 2023.08.01
  • 심사 : 2023.08.10
  • 발행 : 2023.08.31

초록

본 연구에서 연속형 레이저와 나노초 레이저의 경우에는 고분자와 물성 조건이 맞지 않아서, 고분자 필름 표면에 특정 패터닝이 구현되지 않았다. 그러나, 펨토초 레이저를 활용하여 HDPE, PP, PET 등의 식품포장 필름의 표면에 패터닝이 구현됨을 확인하였다. 따라서, 본 연구에서 식품포장 필름에서 펨토초 레이저 패터닝 공정 조건을 확립하였고, 싱글 펄스에 의한 대면적 원형 패턴, 싱글 펄스를 30%를 중첩한 대면적 거칠기 패턴, 직선 패턴, 직선 패터닝을 중첩한 대면적 거칠기 패턴, 직선 패터닝을 교차하여 격자 패턴 등의 표면 패터닝 필름을 제작하였다. 또한, 표면 패턴 구조와 크기에 따른 패터닝 HDPE, PP, PET 필름은 SEM, AFM, 접촉각 분석을 통하여 그 특성을 확인하였다. 펨토초 레이저 패터닝을 하지 않은 각 대조군 필름의 표면 대비 대면적 원형 패터닝 HDPE 및 PP 필름, 싱글 펄스를 30%를 중첩한 대면적 거칠기 패터닝 및 직선 패터닝을 중첩한 대면적 거칠기 패터닝 PET 필름의 표면은 27.1-37.5°의 접촉각을 나타냄으로써, 패터닝 후에 HDPE, PP, PET 필름은 친수성 표면으로 변화되었다. 반면, 나노-마이크로 크기의 돌기 표면구조를 갖고 있는 대면적 격자 패터닝 HDPE 필름의 경우에는 120.4°의 접촉각을 보임으로써, 패터닝 후에 소수성 표면으로 변화되었다. 따라서, 패터닝을 통해 친수성 표면으로 바뀐 필름들은 단백질, 세포, 바이러스 등을 비롯하여 식품의 물질들이 달라붙지 못하거나, 쉽게 떨어지는 엔티파울링 응용분야에 활용이 가능하다. 또한, 향후 좀더 정밀한 나노 및 마이크로 돌기 구조를 갖는 격자 패터닝을 통해 150° 이상의 초소수성 표면을 제작하게 된다면, 자가 청소(Self-cleaning) 등의 초소수성 표면 응용분야에 활용 가능할 것이다.

In this study, the feasibility of laser patterning on the surface of food packaging polymer film was confirmed, and the surface patterning process conditions of femtosecond laser were established. In addition, it was proved that the surface properties of the film can be changed and controlled through the fabrication of various patterned films on the surface of food packaging films such as HDPE, PP, and PET. Various patterned surfaces, including large-scale circular patterns induced by a single femtosecond laser pulse, roughness patterns achieved by overlapping single pulses by 30%, straight line patterns, roughness patterns obtained by overlapping straight line patterns, and grid patterns formed by intersecting straight line patterns were fabricated. The characteristics of the patterned HDPE, PP, and PET films, based on the surface pattern structure and size, were analyzed using SEM, AFM, and contact angle measurements. Compared to the surface of each control film without femtosecond laser patterning, the contact angles of the surfaces of large-area circular patterning HDPE and PP films, large-area roughness patterning HDPE and PP films by overlapping 30% of single pulses, and large-area roughness patterning PET film by overlapping rectilinear patterning were in the range of 27.1-37.5 degree. This indicated that the HDPE, PP, and PET films became more hydrophilic after patterning. On the other hand, the HDPE film patterned with a large-scale grid pattern exhibited a contact angle of 120.4 degree, indicating that the HDPE film became more hydrophobic after patterning. Therefore, films that have been changed to hydrophilic surfaces through patterning can be used in anti-fouling applications where proteins, cells, viruses, and other food materials do not adhere or are easily detached. In addition, if a superhydrophobic surface of 150 degrees or more is fabricated through more precise lattice patterning in the future, it will be possible to use it for superhydrophobic surface applications such as self-cleaning.

키워드

과제정보

본 연구는 과학기술정보통신부 지원에 의한 한국식품연구원의 기본연구사업(E0133115-06 및 E0211002-03)으로 수행되었습니다. 펨토초 레이저 장비 활용에 도움을 주신 한국과학기술연구원 전호정 박사님께 깊은 감사를 드립니다.

참고문헌

  1. Rovera, C., Ghaani, M. and Farris, S. 2020. Nano-inspired oxygen barrier coatings for food packaging applications: An overview, Trends in Food Science & Technology, 97: 210-220. https://doi.org/10.1016/j.tifs.2020.01.024
  2. Fereydoon, M. and Evnesajjad, S. 2013. Development of high-barrier film for food packaging, Plastic Films in Food Packaging, 71-92.
  3. Nayik, G.A. and Muzaffar, K. 2014. Developments in packaging of fresh fruits- shelf life perspective: A review, American Journal of Food Science and Nutrition Research, 1(5): 34-39.
  4. Irkin, R. and Esmer, O.K. 2015. Novel food packaging systems with natural antimicrobial agents, Journal of Food Science and Technology, 52: 6095-6111.
  5. Chen, S., Brahma, S., Mackay, J., Cao, C. and Aliakbarian, B. 2020. The role of smart packaging system in food supply chain, Journal of Food Science, 85(3): 517-525. https://doi.org/10.1111/1750-3841.15046
  6. Biji, K.B., Ravishankar, C.N., Mohan, C.O. and Srinivasa Gopal, T.K. 2015. Smart packaging systems for food applications: a review, Journal of Food Science and Technology, 52: 6125-6135. https://doi.org/10.1007/s13197-015-1766-7
  7. Afolabi, A.S., Choi, I.L., Lee, J.H., Beom, K.Y. and Kang, H.M. 2022. Comparison of storability and quality of sweet pepper(Capsicum annum L.) grown in two different hydroponics media, Korean Journal of Packaging Science & Technology, 28(1): 39-46. https://doi.org/10.20909/kopast.2022.28.1.39
  8. 이학래, 고의석, 심원철, 김종서, 김재능. 2021. Zeolite/Zinc-polypeptide를 코팅한 폴리프로필렌필름의 향균 및 항진균 특성에 관한 연구. 한국포장학회지, 27(1): 1-8.
  9. Syafig, A., Vengadaesvaran, B., Pandey, A.K. and Rahim, N.A. 2018. Superhydrophilic smart coating for self-cleaning application on glass substrate, Journal of Nanomaterials, 2018: 1-10.
  10. Samaha, M.A., Tafreshi, H.V. and Gad-el-Hak, M. 2012. Superhydrophobic surfaces: From the lotus leaf to the submarine, Comptes Redus Mecanique, 340(1-2): 18-34. https://doi.org/10.1016/j.crme.2011.11.002
  11. Cumpston, B.H., Ananthavel, S.P., Barlow, S., Dyer, D.L., Ehrlich, J.E., Erskine, L.L., Heikal, A.A., Kuebler, S.M., Lee, I.Y.S., McCordMaughon, D., Qin, J., Rockel, H., Rumi, M., Wu, X.L., Marder, S.R. and Perry, J.W. 1999. Two-photon polymerization initiators for three-dimensional 67 optical data storage and microfabrication, Nature, 398(6722): 51-54. https://doi.org/10.1038/17989
  12. Jeon, H., Koo, S., Reese, W.M., Loskill, P., Grigoropoulos, C.P. and Healy, K.E. 2015. Directing cell migration and organization via nanocrater-patterned cell-repellent interfaces, Nature Materials, 14(9): 918-925. https://doi.org/10.1038/nmat4342
  13. Shi, X., Li, X., Jiang, L., Qu, L., Zhao, Y., Ran, P., Wang, Q., Cao, Q., Ma, T. and Lu, Y. 2015. Femtosecond laser rapid fabrication of large-area rose-like micropatterns on freestanding flexible graphene films, Scientific Reports, 5: 17557.
  14. Choi, H. K., Sohn, I.B., Noh, Y.C., Choi, Y.J. and Chang, I.G. 2013. Fabrication of breathable film using laser pulses, J. Korean Soc. Precis. Eng. 30(4): 409-413. https://doi.org/10.7736/KSPE.2013.30.4.409
  15. Yoo, S.R., Han, E.S., Lee, H.J., Cho, G.R., Song, H.Y., Kim, Y.J. and Kim, Y.H. 2016. A packaging method of kimchi product for preventing volumeincrement. KR 10-1677594.