DOI QR코드

DOI QR Code

소성 처리된 굴 패각을 활용한 PLA/PBAT 복합필름의 항균 포장재 적용 연구

Application of PLA/PBAT Composite Films Containing Calcined Oyster Shell Powder for Antimicrobial Packaging

  • 오예나 (연세대학교 패키징 및 물류학과) ;
  • 박기태 (연세대학교 패키징 및 물류학과) ;
  • 서종철 (연세대학교 패키징 및 물류학과)
  • Yena Oh (Department of Packaging & Logistics, Yonsei University) ;
  • Kitae Park (Department of Packaging & Logistics, Yonsei University) ;
  • Jongchul Seo (Department of Packaging & Logistics, Yonsei University)
  • 투고 : 2022.11.21
  • 심사 : 2023.04.12
  • 발행 : 2023.08.31

초록

최근 플라스틱 포장 폐기물 및 굴 패각이 야기하는 환경문제와 장기간 식품의 품질 보존을 위한 액티브 패키징이 주목받고 있다. 이에 따라 본 연구에서는 PLA/PBAT 복합필름에 OSP의 함량을 서로 달리하여 이축 압출기로 PLA/PBAT-OSP 복합필름을 제조하였고 항균 포장재로써 적용가능성을 확인하였다. 이를 위해 화학적 특성, 표면 특성, 열적 특성, 기계적 특성 및 항균성을 평가하여 분석하였다. PLA/PBAT-OSP 복합필름의 고분자 매트릭스 내에서 OSP의 물리적 분산을 확인하였으며, OSP의 함량이 증가함에 따라 항균성이 증가하였다. 특히 OSP 5%, OSP 10% 필름에서는 99% 이상의 항균성을 나타내어 제조된 필름이 우수한 항균성을 가진다는 것을 확인할 수 있었다. 그러나 OSP의 함량의 증가는 PLA/PBAT-OSP 매트릭스 내의 OSP 응집을 일으켜 기계적 물성의 저하 및 표면의 거칠기 증가가 나타났으며, 이는 필름의 표면 에너지 증가로 이어졌다. 결론적으로 PLA/PBAT-OSP 복합필름은 미생물로 인한 식품의 부패를 막기 위한 포장재로 적용될 수 있지만, 이를 위해 OSP의 분산성과 필름의 기계적 물성을 향상시키기 위한 추가 연구가 필요할 것으로 보인다.

In this study, poly(lactic acid) (PLA) and Poly(butylene-adipate-co-terephthalate) (PBAT) composite films containing calcined oyster shell powder (OSP) were evaluated for the applicability of antimicrobial packaging. PLA/PBAT-OSP composite films were prepared using twin-screw extruder. The OSP composite was incorporated into PLA/PBAT blend with different ratios (0, 1, 3, 5 and 10%) and the effect of OSP in the PLA/PBAT matrix was evaluated. The PLA/PBAT-OSP composite films were evaluated for properties using FT-IR, SEM, TGA, DSC, UTM, UV-vis, and Contact angle, as well as antimicrobial property was examined according to ISO 22196 - Antimicrobial Plastic Test. As OSP was added, it showed high antimicrobial activities for both Gram-positive (Staphylococcus aureus) and Gram-negative (Escherichia coli) bacteria. On the other hand, it was found that mechanical properties decreased as OSP was added. For the application of PLA/PBAT-OSP composite films as an antimicrobial packaging material, it is necessary to improve the dispersibility of OSP in the PLA/PBAT composite films and their physical properties at the same time.

키워드

과제정보

이 논문은 2020년 정부(교육과학기술부)의 재원으로 한국연구재단의 지원을 받아 수행된 기초연구사업 연구임.(2020DG042010108)

참고문헌

  1. Ray, S.S. and Bousmina, M. (2005). Biodegradable polymers and their layered silicate nanocomposites: in greening the 21st century materials world. Progress in Materials Science, 50(8): 962-1079. https://doi.org/10.1016/j.pmatsci.2005.05.002
  2. Kumar, M., Mohanty, S., Nayak, S.K. and Parvaiz, M.R. (2010). Effect of glycidyl methacrylate (GMA) on the thermal, mechanical and morphological property of biodegradable PLA/PBAT blend and its nanocomposites. Bioresource Technology, 101(21): 8406-8415. https://doi.org/10.1016/j.biortech.2010.05.075
  3. Ma, P., Jiang, L., Yu, M., Dong, W. and Chen, M. (2016). Green antibacterial nanocomposites from poly (lactide)/poly (butylene adipate-co-terephthalate)/nanocrystal cellulose-silver nanohybrids. ACS Sustainable Chemistry & Engineering, 4(12): 6417-6426. https://doi.org/10.1021/acssuschemeng.6b01106
  4. Ketelsen, M., Janssen, M. and Hamm, U. (2020). Consumers' response to environmentally-friendly food packaging-A systematic review. Journal of Cleaner Production, 254: 120123.
  5. Singh, P., Wani, A. and Saengerlaub, S. (2011). Active packaging of food products: Recent trends.Nutrition & Food Science. 41(4): 249-260. https://doi.org/10.1108/00346651111151384
  6. Gerez, C.L., Torres, M.J., De Valdez, G.F. and Rollan, G. (2013). Control of spoilage fungi by lactic acid bacteria. Biological Control, 64(3): 231-237. https://doi.org/10.1016/j.biocontrol.2012.10.009
  7. Liu, Y., Guo, J., Zheng, X., Tang, K., Lin, L. and Nie, M. (2022). Biofriendly waste shell powders/polylactic acid composites for antibacterial engineering applications. ACS Omega, 7(41): 36672-36678.
  8. Wu, C.S., Wu, D.Y. and Wang, S.S. (2021). Preparation, characterization, and functionality of bio-based polyhydroxyalkanoate and renewable natural fiber with waste oyster shell composites. Polymer Bulletin, 78(9): 4817-4834. https://doi.org/10.1007/s00289-020-03341-x
  9. Mo, K.H., Alengaram, U.J., Jumaat, M.Z., Lee, S.C., Goh, W.I. and Yuen, C.W. (2018). Recycling of seashell waste in concrete: A review. Construction and Building Material, 162: 751-764. https://doi.org/10.1016/j.conbuildmat.2017.12.009
  10. Park, K., Sadeghi, K., Thanakkasaranee, S., Park, Y.I., Park, J., Nam, K.H. ... and Seo, J. (2021). Effects of calcination temperature on morphological and crystallographic properties of oyster shell as biocidal agent. International Journal of Applied Ceramic Technology, 18(2): 302-311. https://doi.org/10.1111/ijac.13647
  11. Sawai, J. (2003). Quantitative evaluation of antibacterial activities of metallic oxide powders (ZnO, MgO and CaO) by conductimetric assay. Journal of Microbiological Methods, 54(2): 177-182. https://doi.org/10.1016/S0167-7012(03)00037-X
  12. Subhan, M.A., Rifat, T.P., Saha, P.C., Alam, M.M., Asiri, A.M., Rahman, M.M., Akter, S., Raihan, T., Azad, A.K., and Uddin, J. (2020). Enhanced visible light-mediated photocatalysis, antibacterial functions and fabrication of a 3-chlorophenol sensor based on ternary Ag 2 O. SrO. CaO. RSC Advances, 10(19): 11274-11291. https://doi.org/10.1039/D0RA01205J
  13. Su, S. (2021). Prediction of the miscibility of PBAT/PLA blends. Polymers, 13(14): 2339.
  14. Jiang, L., Zhang, J., and Wolcott, M.P. (2007). Comparison of polylactide/nano-sized calcium carbonate and polylactide/montmorillonite composites: reinforcing effects and toughening mechanisms. Polymer, 48(26): 7632-7644. https://doi.org/10.1016/j.polymer.2007.11.001
  15. Wiegand, C., Volpel, A., Ewald, A., Remesch, M., Kuever, J., Bauer, J., ... and Bossert, J. (2018). Critical physiological factors influencing the outcome of antimicrobial testing according to ISO 22196/JIS Z 2801. Plos One, 13(3): e0194339.
  16. Al-Itry, R., Lamnawar, K., and Maazouz, A. (2012). Improvement of thermal stability, rheological and mechanical properties of PLA, PBAT and their blends by reactive extrusion with functionalized epoxy. Polymer Degradation and Stability, 97(10): 1898-1914. https://doi.org/10.1016/j.polymdegradstab.2012.06.028
  17. Rujitanapanich, S., Kumpapan, P. and Wanjanoi, P. (2014). Synthesis of hydroxyapatite from oyster shell via precipitation. Energy Procedia, 56: 112-117. https://doi.org/10.1016/j.egypro.2014.07.138
  18. Shah, A.R., Prabhakar, M.N., Wang, H., and Song, J.I. (2018). The influence of particle size and surface treatment of filler on the properties of oyster shell powder filled polypropylene composites. Polymer Composites, 39(7): 2420-2430. https://doi.org/10.1002/pc.24225
  19. Shi, N., Cai, J., and Dou, Q. (2013). Crystallization, morphology and mechanical properties of PLA/PBAT/CaCO3 composites. Advanced Materials Research, 602: 768-771.
  20. Li, Y., Chen, S., Li, X., Wu, M., and Sun, J. (2015). Highly transparent, nanofiller-reinforced scratch-resistant polymeric composite films capable of healing scratches. ACS nano, 9(10): 10055-10065. https://doi.org/10.1021/acsnano.5b03629
  21. Hong, X., Zheng, Y., Zhang, X., and Wu, X. (2020). Preparation of graphene intercalated magnesium silicate for enhancing the thermal stability and thermal conductivity of ethylene-vinyl acetate copolymer. Polymer, 193: 122332.
  22. Park, K., Kambiz, S., and Seo, J. (2021). Preparation and characterization of antimicrobial composite film containing calcined oyster shell powder. Korean Journal of Packaging Science & Technology, 27(1): 41-48. https://doi.org/10.20909/kopast.2021.27.1.41
  23. Ho, S.H., Supri, A.G., and Ismail, H. (2015). Enhancing interfacial adhesion of potash feldspar with silane (Si-69) coupling agent on properties of ethylene vinyl acetate (EVA)/natural rubber (NR)/potash feldspar composites. Journal of Advanced Research in Materials Science, 11(1): 8-19.
  24. Park, C.H., Kim, H.S., and Lee, Y.M. (2014). Surface modification of proton exchange membrane by introduction of excessive amount of nanosized silica. Membrane Journal, 24(4): 301-310. https://doi.org/10.14579/MEMBRANE_JOURNAL.2014.24.4.301
  25. Lin, C., Wang, Q., Deng, Q., Huang, H., Huang, F., Huang, L., Ni, Y., Chen, L., and Ma, X. (2019). Preparation of highly hazy transparent cellulose film from dissolving pulp. Cellulose, 26(6): 4061-4069. https://doi.org/10.1007/s10570-019-02367-3
  26. Khaneghah, A.M., Hashemi, S.M. B., and Limbo, S. (2018). Antimicrobial agents and packaging systems in antimicrobial active food packaging: An overview of approaches and interactions. Food and Bioproducts Processing, 111: 1-19. https://doi.org/10.1016/j.fbp.2018.05.001
  27. Muriel-Galet, V., Cran, M.J., Bigger, S.W., Hernandez-Munoz, P., and Gavara, R. (2015). Antioxidant and antimicrobial properties of ethylene vinyl alcohol copolymer films based on the release of oregano essential oil and green tea extract components. Journal of Food Engineering, 149: 9-16. https://doi.org/10.1016/j.jfoodeng.2014.10.007
  28. Park, J.Y., Ha, M.Y., Choi, H.J., Hong, S.D., and Yoon, H. S. (2011). A study on the contact angles of a water droplet on smooth and rough solid surfaces. Journal of Mechanical Science and Technology, 25(2): 323-332.
  29. Raghunath, A., and Perumal, E. (2017). Metal oxide nanoparticles as antimicrobial agents: a promise for the future. International Journal of Antimicrobial Agents, 49(2): 137-152. https://doi.org/10.1016/j.ijantimicag.2016.11.011
  30. Dizaj, S., Lotfipour, F., Barzegar-Jalali, M., Zarrintan, M., and Adibkia, K. (2014). Antimicrobial activity of the metals and metal oxide nanoparticles. Materials Science and Engineering, C, 44: 278-284. https://doi.org/10.1016/j.msec.2014.08.031
  31. Gedda, G., Pandey, S., Lin, Y., and Wu, H. (2015). Antibacterial effect of calcium oxide nano-plates fabricated from shrimp shells. Green Chemistry, 17(6): 3276-3280. https://doi.org/10.1039/C5GC00615E
  32. Liang, X., Dai, R., Chang, S., Wei, Y., and Zhang, B. (2022). Antibacterial mechanism of biogenic calcium oxide and antibacterial activity of calcium oxide/polypropylene composites. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 650: 129446.
  33. Jokar, M., Abdul Rahman, R., Ibrahim, N.A., Abdullah, L. C., and Tan, C.P. (2012). Melt production and antimicrobial efficiency of low-density polyethylene (LDPE)-silver nanocomposite film. Food and Bioprocess Technology, 5: 719-728. https://doi.org/10.1007/s11947-010-0329-1
  34. Pantani, R., Gorrasi, G., Vigliotta, G., Murariu, M., and Dubois, P. (2013). PLA-ZnO nanocomposite films: Water vapor barrier properties and specific end-use characteristics. European Polymer Journal, 49(11): 3471-3482.