DOI QR코드

DOI QR Code

Biogeochemistry of Methane in Water and Sediment: Methane Generation in Coastal Areas with Bottom Water Hypoxia

메탄의 생지화학적 거동과 한국 연안해역 저(빈)산소 층 발달에 따른 메탄 생성

  • DONGJOO JOUNG (Department of Oceanography, Pusan National University)
  • Received : 2023.05.23
  • Accepted : 2023.08.08
  • Published : 2023.08.31

Abstract

Methane (CH4) is a key greenhouse gas in the atmosphere with 85 times greater greenhouse potent relative to carbon dioxide (CO2). The atmospheric concentration of CH4 is rapidly increasing due to the intensive usage of CH4 and the thawing of the cryosphere. Additionally, with the current warming of ocean water, the dissociation of gas hydrates, an ice-like compound and the largest reservoir of CH4 on Earth, is expected to occur, resulting in the release of CH4 from the seafloor into the overlying water and atmosphere. Moreover, bottom water hypoxia is another concern that potentially introduces greenhouse gases into the atmosphere. With ongoing global warming and eutrophication, the size and duration of bottom water hypoxia are rapidly increasing. These low-oxygen conditions would relocate the redox zone shallower in sediment or in the water column, causing the release of CH4 into the atmosphere and thereby intensifying global warming. However, there exists a gap in the understanding of CH4 dynamics including its generation in relation to bottom water hypoxia. Therefore, this review article aims to understand the relationship between CH4 and bottom water hypoxia and to draw attention to CH4 investigation in Korea.

메탄은 아주 중요한 온실기체로, 최근 20년간 같은 양의 이산화탄소에 비해 약 85배 높은 온실효과를 갖고 있다. 천연가스 사용 증가와 온난화에 따른 빙권의 해동으로 대기 중 메탄 농도는 빠르게 상승하고 있다. 또한, 현재 진행 중인 해수 온도 상승으로 가스-하이드레이트(얼음-기체 복합체) 붕괴가 전 지구적으로 발생할 것으로 예상되고, 궁극적으로 막대한 양의 메탄이 해수 및 대기로 누출될 것으로 예상된다. 또한, 연안 해양 저산소층 또한 온실기체 생성 대기로 유출시킬 수 있다. 특히, 현재 진행 중인 지구 온난화와 연안 해역 부영양화로 인해, 해저 저산소층은 전 세계적으로 그 크기와 기간이 급격히 늘어나고 있다. 이러한 해저 저산소층은, 산화-환원 대를 퇴적 표층 얕은 지역 또는 해수 내로 이동시켜, 메탄의 대기 용출을 용이하게 하고 궁국적으로 지구 온난화를 가중시킬 수 있다. 하지만, 해저 저산소층과 메탄 발생을 포함한, 메탄 연구는 한국뿐만 아니라, 전 세계적으로 아주 미미한 수준이다. 따라서, 이 리뷰논문은 자연환경 내 메탄의 복잡한 상호작용 이해를 통해, 연안 해저 저산소층 발달과 메탄의 관계를 파악, 나아가 한국 내 메탄 연구 활성화에 기여하는데 목적이 있다.

Keywords

Acknowledgement

본 연구는 부산대학교 기본연구지원사업(2년)에 의하여 연구되었음.

References

  1. Abushammala, M.F., N.E.A. Basri, D. Irwan and M.K. Younes, 2014. Methane oxidation in landfill cover soils: a review. Asian Journal of Atmospheric Environment, 8(1), 1-14. https://doi.org/10.5572/ajae.2014.8.1.001
  2. Allan, W., D.C. Gomez, A.J. Lowe, H. Struthers and G.W. Brailsford, 2005. Interannual variation of 13C in tropospheric methane: implications for a possible atomic chlorine sink in the marine boundary layer. J Geophys Res., 110: D11306.
  3. Allan, W., H. Struthers and D.C. Lowe, 2007. Methane carbon isotope effects caused by atomic chlorine in the marine boundary layer: global model results compared with Southern Hemisphere measurements. J Geophys Res Atmos., 112(D4): D04306.
  4. Alperin, M.J. and W.S. Reeburgh, 1985. Inhibition experiments on anaerobic methane oxidation. Appl Environ Microbiol., 50(4): 940-945. https://doi.org/10.1128/aem.50.4.940-945.1985
  5. Amend, J.P. and E.L. Shock, 2001. Energetics of overall metabolic reactions of thermophilic and hyperthermophilic Archaea and Bacteria. FEMS Microbiol Rev., 25:1 75-243. https://doi.org/10.1111/j.1574-6976.2001.tb00576.x
  6. Argentino, C., K.A. Waghorn, S. Bunz and G. Panieri, 2021. Sulfate reduction and anaerobic oxidation of methane in sediments of the South-Western Barents Sea. Biogeosciences Discussions, 1-14.
  7. Bastviken, D., J.J. Cole, M.L. Pace, V. de Bogert and C. Matthew, 2008. Fates of methane from different lake habitats: connecting whole-lake budgets and CH4 emissions. J Geophys Res Biogeosci., 113(G02024): 1-13. https://doi.org/10.1029/2007JG000608
  8. Bastviken, D., L.J. Tranvik, J.A. Downing, P.M. Crill and A. Enrich-Prast, 2011. Freshwater methane emissions offset the continental carbon sink. Science, 331(6013): 50.
  9. Beal, E.J., C.H. House and V.J. Orphan, 2009. Manganese-and iron-dependent marine methane oxidation. Science. 325(5937): 184-187. https://doi.org/10.1126/science.1169984
  10. Bender, M. and R. Conrad, 1992. Kinetics of CH4 oxidation in oxic soils exposed to ambient air or high CH4 mixing ratios. FEMS Microbiol Ecol., 101(4): 261-269. https://doi.org/10.1111/j.1574-6941.1992.tb01663.x
  11. Benstead, J. and G.M. King, 1997. Response of methanotrophic activity in forest soil to methane availability. FEMS Microbiol Ecol., 23(4): 333-340. https://doi.org/10.1016/S0168-6496(97)00041-X
  12. Bodrossy, L., J.C. Murrell, H. Dalton, M. Kalman, L.G. Puskas and K.L. Kovacs, 1995. Heat-tolerant methanotrophic bacteria from the hotwater effluent of a natural-gas field. Appl Environ Microbiol., 61: 3549-3555. https://doi.org/10.1128/aem.61.10.3549-3555.1995
  13. Boeckx, P., O. Van Cleemput and I. Villaralvo, 1997. Methane oxidation in soils with different textures and land use. Nutr Cycl Agroecosyst., 49: 91-95. https://doi.org/10.1023/A:1009706324386
  14. Boetius, A. and F. Wenzhofer, 2013. Seafloor oxygen consumption fuelled by methane from cold seeps. Nat Geosci., 6(9): 725-734. https://doi.org/10.1038/ngeo1926
  15. Boetius, A., K. Ravenschlag, C.J. Schubert, D. Rickert, F. Widdel, A. Giesecke, R. Amann, B.B. Jorgensen, U. Witte and O. Pfannkuche, 2000. A marine microbial consortium apparently mediating anaerobic oxidation of methane. Nature, 407: 623-626. https://doi.org/10.1038/35036572
  16. Bonaglia, S., F.A. Nascimento, M. Bartoli, I. Klawonn and V. Bruchert, 2014. Meiofauna increases bacterial denitrification in marine sediments. Nat Commun., 5: 5133.
  17. Boswell, R. and T.S. Collett, 2011. Current perspectives on gas hydrate resources. Energy and environmental science, 4(4): 1206-1215. https://doi.org/10.1039/C0EE00203H
  18. Boucher, O., P. Friedlingstein, B. Collins, K.P. Shine, 2009. The indirect global warming potential and global temperature change potential due to methane oxidation. Environ Res Lett., 4(4): 044007.
  19. Breitburg, D., L.A. Levin, A. Oschlies, M. Gregoire, F.P. Chavez, D.J. Conley, V. Garcon, D. Gilbert, D. Gutierrez, K. Isensee and G.S. Jacinto, 2018. Declining oxygen in the global ocean and coastal waters. Science, 359(6371): eaam7240.
  20. Campen, R.K., T. Sowers and R.B. Alley, 2003. Evidence of microbial consortia metabolizing within a low-latitude mountain glacier. Geology, 31(3): 231-234. https://doi.org/10.1130/0091-7613(2003)031<0231:EOMCMW>2.0.CO;2
  21. Canadell, J.G., P.M.S. Monteiro, M.H. Costa, L. Cotrim da Cunha, P.M. Cox, A.V. Eliseev, S. Henson, M. Ishii, S. Jaccard, C. Koven, A. Lohila, P.K. Patra, S. Piao, J. Rogelj, S. Syampungani, S. Zaehle and K. Zickfeld, 2021. Global Carbon and other Biogeochemical Cycles and Feedbacks. In Climate Change 2021: The Physical Science Basis. Contribution of Working Group I to the Sixth Assessment Report of the Intergovernmental Panel on Climate Change [Masson-Delmotte, V., P. Zhai, A. Pirani, S.L. Connors, C. Pean, S. Berger, N. Caud, Y. Chen, L. Goldfarb, M.I. Gomis, M. Huang, K. Leitzell, E. Lonnoy, J.B.R. Matthews, T.K. Maycock, T. Waterfield, O. Yelekci, R. Yu and B. Zhou(eds.)]. Cambridge University Press, Cambridge, United Kingdom and New York, NY, USA, pp. 673-816.
  22. Capelle, D.W., A.K. Hawley, S. Hallam and P.D. Tortell, 2018. A multi-year time-series of N2O dynamics in a seasonally anoxic fjord: Saanich Inlet, British Columbia. Limnol Oceanogr, 63(2): 524-539. https://doi.org/10.1002/lno.10645
  23. Cappenberg, T.E., 1975. A study of mixed continuous cultures of sulfate-reducing and methane producing bacteria. Microb Ecol., 2(1): 60-72. https://doi.org/10.1007/BF02010381
  24. Chanton, J.P., 2005. The efect of gas transport on the isotope signature of methane in wetlands. Org Geochem., 36: 753-768. https://doi.org/10.1016/j.orggeochem.2004.10.007
  25. Chen, X., H.K. Kwon, T.H. Kim, S.E. Park, W.C. Lee and G. Kim, 2023. Significant contribution of coastal fish-farm activities to the inventory of trace elements in coastal waters: Traced by ammonia and rare earth elements. Marine Pollution Bulletin, 188: 114612.
  26. Childress, J.J., C.R. Fisher, J.M. Brooks, M.C. Kennicutt, R.A.A.E. Bidigare and A.E. Anderson, 1986. A methanotrophic marine molluscan (Bivalvia, Mytilidae) symbiosis: mussels fueled by gas. Science, 233(4770): 1306-1308. https://doi.org/10.1126/science.233.4770.1306
  27. Colmer, T.D., 2003. Long-distance transport of gases in plants: a perspective on internal aeration and radial oxygen loss from roots. Plant Cell Environment, 26(1): 17-36. https://doi.org/10.1046/j.1365-3040.2003.00846.x
  28. Conrad, R. and M. Klose, 1999. How specific is the inhibition by methylfluoride of acetoclastic methanogenesis in anoxic rice field soil? FEMS Microbiol Ecol., 30: 47-56. https://doi.org/10.1111/j.1574-6941.1999.tb00634.x
  29. Conrad, R., 1996. Soil microorganisms as controllers of atmospheric trace gases (H2, CO, CH4, OCS, N2O, and NO). Microbiol Rev., 60: 609-640. https://doi.org/10.1128/mr.60.4.609-640.1996
  30. Conrad, R., 2009. The global methane cycle: recent advances in understanding the microbial processes involved. Environmental microbiology reports, 1(5): 285-292. https://doi.org/10.1111/j.1758-2229.2009.00038.x
  31. Covey, K.R., S.A. Wood, R.J. Warren, X. Lee and M.A. Bradford, 2012. Elevated methane concentrations in trees of an upland forest. Geophysical Research Letters, 39(15).
  32. Crowe, S.A., S. Katsev, K. Leslie, A. Sturm, C. Magen, S. Nomosatryo, M.A. Pack, J.D. Kessler, W.S. Reeburgh, J.A. Roberts, L. Gonzalez, H.G. Douglas, A. Mucci, B. Sundby and D.A. Fowle, 2011. The methane cycle in ferruginous Lake Matano. Geobiology, 9: 61-78. https://doi.org/10.1111/j.1472-4669.2010.00257.x
  33. Crutzen, P.J., 1991. Methane's sinks and sources. Nature, 350(6317): 380-381. https://doi.org/10.1038/350380a0
  34. D'Hondt, S., F. Inagaki, C.A. Zarikian, L.J. Abrams, N. Dubois, T. Engelhardt and B.W. Hoppie, 2015. Presence of oxygen and aerobic communities from sea floor to basement in deep-sea sediments. Nat Geosci., 8(4): 299.
  35. Dalal, R.C. and D.E. Allen, 2008. Greenhouse gas fluxes from natural ecosystems. Aust J Bot., 56(5): 369-407. https://doi.org/10.1071/BT07128
  36. Damm, E., E. Helmke, S. Thoms, U. Schauer, E. Nothig, K. Bakker and R.P. Kiene, 2010. Methane production in aerobic oligotrophic surface water in the central Arctic Ocean. Biogeosciences, 7(3): 1099-1108. https://doi.org/10.5194/bg-7-1099-2010
  37. Dedysh, S.N., W. Liesack, V.N. Khmelenina, N.E. Suzina, Y.A. Trotsenko, J.D. Semrau, A.M. Bares, N.S. Panikov and J.M. Tiedje, 2000. Methylocella palustris gen. nov., sp. nov., a new methaneoxidizing acidophilic bacterium from peat bogs, representing a novel subtype of serine-pathway methanotrophs. Int J Syst Evol Microbiol., 50: 955-969. https://doi.org/10.1099/00207713-50-3-955
  38. Del Grosso, S.J., W.J. Parton, A.R. Mosier, D.S. Ojima, C.S. Potter, W. Borken, R. Brumme, K. Butterbach-Bahl, P.M. Crill, K. Dobbie and K.A. Smith, 2000. General CH4 oxidation model and comparisons of CH4 oxidation in natural and managed systems. Global Biogeochem Cy., 14: 999-1019. https://doi.org/10.1029/1999GB001226
  39. Deutzmann, J.S. and B. Schink, 2011. Anaerobic oxidation of methane in sediments of Lake Constance, an oligotrophic freshwater lake. Appl Environ Microbiol., 77(13): 4429-4436. https://doi.org/10.1128/AEM.00340-11
  40. Dickens, G.R., J.R. O'Neil, D.K. Rea and R.M. Owen, 1995. Dissociation of oceanic methane hydrate as a cause of the carbon isotope excursion at the end of the Paleocene. Paleoceanography., 10: 965-971. https://doi.org/10.1029/95PA02087
  41. Diender, M., A.J. Stams and D.Z. Sousa, 2015. Pathways and bioenergetics of anaerobic carbon monoxide fermentation. Front Microbiol., 6: 1275.
  42. Dunfield, P.F. and R. Conrad, 2000. Starvation alters the apparent half-saturation constant for methane in the type II methanotroph Methylocystis strain LR1. Appl Environ Microbiol., 66: 4136-4138. https://doi.org/10.1128/AEM.66.9.4136-4138.2000
  43. Dunfield, P.F., W. Liesack, T. Henckel, R. Knowles and R. Conrad, 1999. High-affinity methane oxidation by a soil enrichment culture containing a type II methanotroph. Appl Environ Microbiol., 65(3): 1009-1014. https://doi.org/10.1128/AEM.65.3.1009-1014.1999
  44. Etiope, G. and R.W. Klusman, 2002. Geologic emissions of methane to the atmosphere. Chemosphere, 49(8): 777-789. https://doi.org/10.1016/S0045-6535(02)00380-6
  45. Fei, Q., M.T. Guarnieri, L. Tao, L.M. Laurens, N. Dowe and P.T. Pienkos, 2014. Bioconversion of natural gas to liquid fuel: opportunities and challenges. Biotechnology Advances, 32(3): 596-614. https://doi.org/10.1016/j.biotechadv.2014.03.011
  46. Ferry, J.G., 2011. Fundamentals of methanogenic pathways that are key to the biomethanation of complex biomass. Curr Opin Biotechnol., 22(3): 351-357. https://doi.org/10.1016/j.copbio.2011.04.011
  47. Fung, I., J. John, J. Lerner, E. Matthews, M. Prather, L.P. Steele and P.J. Fraser, 1991. Three-dimensional model synthesis of the global methane cycle. J Geophys Res., 96: 13033-13065. https://doi.org/10.1029/91JD01247
  48. Fuse, H., M. Ohta, O. Takimura, K. Murakami, H. Inoue, Y. Yamaoka, J.M. Oclarit and T. Omori, 1998. Oxidation of trichloroethylene and dimethyl sulfide by a marine Methylomicrobium strain containing soluble methane monooxygenase. Biosci Biotechnol Biochem., 62: 1925-1931. https://doi.org/10.1271/bbb.62.1925
  49. Gelesh, L., K. Marshall, W. Boicourt and L. Lapham, 2016. Methane concentrations increase in bottom waters during summertime anoxia in the highly eutrophic estuary, Chesapeake Bay, USA. Limnology and Oceanography, 61(S1): S253-S266. https://doi.org/10.1002/lno.10272
  50. Ghashghavi, M., M.S. Jetten and C. Luke, 2017. Survey of methanotrophic diversity in various ecosystems by degenerate methane monooxygenase gene primers. Amb Express, 7: 1-11. https://doi.org/10.1186/s13568-016-0313-x
  51. Glass, J.B. and V.J. Orphan, 2012. Trace metal requirements for microbial enzymes involved in the production and consumption of methane and nitrous oxide. Frontiers in microbiology, 3: 61.
  52. Goevert, D. and R. Conrad, 2009. Effect of substrate concentration on carbon isotope fractionation during acetoclastic methanogenesis by Methanosarcina barkeri and M. acetivorans and in rice field soil. Appl Environ Microbiol., 75(9): 2605-2612. https://doi.org/10.1128/AEM.02680-08
  53. Grant, N.J. and M.J. Whiticar, 2002. Stable carbon isotopic evidence for methane oxidation in plumes above Hydrate Ridge, Cascadia Oregon Margin. Glob Biogeochem Cycles, 16(4): 1-13. https://doi.org/10.1029/2001GB001398
  54. Groot, T.T., P.M. VanBodegom, F.J.M. Harren and H.A.J. Meijer, 2003. Quantification of methane oxidation in the rice rhizosphere using 13C-labelled methane. Biogeochemistry, 64: 355-372. https://doi.org/10.1023/A:1024921714852
  55. Halverson, G.P., P.F. Hoffman, D.P. Schrag and A.J. Kaufman, 2002. A major perturbation of the carbon cycle before the Ghaub glaciation(Neoproterozoic) in Namibia: prelude to snowball Earth? Geochem Geophys Geosyst., 3(6): 1-24. https://doi.org/10.1029/2001GC000244
  56. Hanson, R.S. and T.E. Hanson, 1996. Methanotrophic bacteria. Microbiological reviews, 60(2): 439-471. https://doi.org/10.1128/mr.60.2.439-471.1996
  57. Henckel, T., U. Jackel, S. Schnell and R. Conrad, 2000. Molecular analyses of novel methanotrophic communities in forest soil that oxidize atmospheric methane. Appl Environ Microbiol., 66(5): 1801-1808. https://doi.org/10.1128/AEM.66.5.1801-1808.2000
  58. Hietala, A.M., P. Dorsch, H. Kvaalen and H. Solheim, 2015. Carbon dioxide and methane formation in Norway spruce stems infected by white-rot fungi. Forests, 6(9): 3304-3325. https://doi.org/10.3390/f6093304
  59. Hinrichs, K.-U. and A. Boetius, 2002. The anaerobic oxdiation of methane: new insights in microbial ecology and biogeochemistry. In: Wefer G, Billett D, Hebbeln D, Jorgensen BB, Schluter M, Weering TV (eds) Ocean margin systems. Springer, Berlin, pp. 457-477.
  60. Hinrichs, K.-U. and A. Boetius, 2003. The anaerobic oxdiation of methane: new insights in microbial ecology and biogeochemistry. In: Wefer G, Billett D, Hebbeln D, Jorgensen BB, Schluter M, Weering TV(eds) Ocean margin systems. Springer, Berlin, pp. 457-477.
  61. Hovland, M., A.G. Judd and R.A. Burke, 1993. The global flux of methane from shallow submarine sediments. Chemosphere, 26(1): 559-578. https://doi.org/10.1016/0045-6535(93)90442-8
  62. Hu, S., R.J. Zeng, M.F. Haroon, J. Keller, P.A. Lant, G.W. Tyson and Z. Yuan, 2015. A laboratory investigation of interactions between denitrifying anaerobic methane oxidation(DAMO) and anammox processes in anoxic environments. Sci Rep., 5: 8706.
  63. Im, J., S.W. Lee, S. Yoon, A.A. DiSpirito and J.D. Semrau, 2011. Characterization of a novel facultative Methylocystis species capable of growth on methane, acetate and ethanol. Environ Microbiol Rep., 3(2): 174-181. https://doi.org/10.1111/j.1758-2229.2010.00204.x
  64. Ingvorsen, K. and B.B. Jorgensen, 1984. Kinetics of sulfate uptake by freshwater and marine species of Desulfovibrio. Arch Microbiol., 139: 61-66. https://doi.org/10.1007/BF00692713
  65. Islas-Lima, S., F. Thalasso, and J. Gomez-Hernandez, 2004. Evidence of anoxic methane oxidation coupled to denitrification. Water Research, 38(1): 13-16. https://doi.org/10.1016/j.watres.2003.08.024
  66. Jorgensen, B.B., 1977. Bacterial sulfate reduction within reduced microniches of oxidized marine sediments. Mar Biol., 41(1): 7-17. https://doi.org/10.1007/BF00390576
  67. Joye, S.B., A. Boetius, B.N. Orcutt, J.P. Montoya, H.N. Schulz, M.J. Erickson and S.K. Lugo, 2004. The anaerobic oxidation of methane and sulfate reduction in sediments from Gulf of Mexico cold seeps. Chem Geol., 205(3): 219-238. https://doi.org/10.1016/j.chemgeo.2003.12.019
  68. Kalyuzhnaya, M.G., V. Khmelenina, B. Eshinimaev, D. Sorokin, H. Fuse, M. Lidstrom and Y. Trotsenko, 2008. Classification of halo(alkali)philic and halo(alkali)tolerant methanotrophs provisionally assigned to the genera Methylomicrobium and Methylobacter and emended description of the genus Methylomicrobium. Int J Syst Evol Microbiol., 58: 591-596. https://doi.org/10.1099/ijs.0.65317-0
  69. Karl, D.M., L. Beversdorf, K.M. Bjorkman, M.J. Church, A. Martinez and E.F. Delong, 2008. Aerobic production of methane in the sea. Nature Geoscience, 1(7): 473.
  70. Kashefi, K. and D.R. Lovley, 2003. Extending the upper temperature limit for life. Science, 301(5635): 934-934. https://doi.org/10.1126/science.1086823
  71. Keltjens, J.T. and G.D. Vogels, 1993. Conversion of methanol and methylamines to methane and carbon dioxide. In: Ferry JG(ed) Methanogenesis- ecology, physiology, biochemistry and genetics. Springer, Boston, pp. 253-303. 
  72. Kennedy, M.J., N. Christie-Blick and L.E. Sohl, 2001. Are proterozoic cap carbonates and isotopic excursions a record of gas hydrate destabilization following earth's coldest intervals? Geology, 29(5): 443-446. https://doi.org/10.1130/0091-7613(2001)029<0443:APCCAI>2.0.CO;2
  73. Kevbrin, V.V., A.M. Lysenko and T.N. Zhilina, 1997. Physiology of alkaliphilic methanogen Z-7936, a new strain of Methanosalsus zhilinae isolated from Lake Magadi. Microbiology (English translation of Mikrobiologiia). 66: 261-266.
  74. Khalil, M.A.K. and R.A. Rasmussen, 1983. Sources, sinks, and seasonal cycles of atmospheric methane. J Geophys Res Oceans, 88(C9): 5131-5144. https://doi.org/10.1029/JC088iC09p05131
  75. Kim, C.-K. and P.-Y. Lee 1994. Water mass structure and dissolved oxygen distribution in Chinhae Bay. Korean J. Fish. Aquat. Sci., 27: 572-582.
  76. Kim, D., C.-W. Lee, S.-H. Choi and Y.O. Kim, 2012. Long-term changes in water quality of Masan Bay, Korea. J. Coast. Res., 28: 923-929. DOI: 10.2112/JCOASTRES-D-11-00165.1.
  77. Kim, J. and T.H. Kim, 2020. Distribution of humic fluorescent dissolved organic matter in lake Shihwa: the role of the redox condition. Estuaries and Coasts, 43: 578-588. https://doi.org/10.1007/s12237-018-00491-0
  78. Kim, N.S., H. Kang, M.-S. Kwon, H.-S. Jang and J.G. Kim, 2016. Comparison of seawater exchange rate of small scale inner bays within Jinhae Bay. J. Korean Soc. Mar. Environ. Energy, 19: 74-85. DOI: 10.7846/JKOSMEE.2016.19.1.74.
  79. Kim, S. and S. An, 2022. A Study on the Effect of the Development of Anaerobic Respiration Processes in the Sediment with the Water-column Stratification and Hypoxia and Its Influence on Methane at Dangdong Bay in Jinhae, Korea. Ocean and Polar Research, 44(1): 1-11.
  80. King, G.M., M.J. Klug and D.R. Lovley, 1983. Metabolism of acetate, methanol, and methylated amines in intertidal sediments of Lowes Cove, Maine. Appl Environ Microbiol, 45: 1848-1853. https://doi.org/10.1128/aem.45.6.1848-1853.1983
  81. Knoblauch, C., O. Spott, S. Evgrafova, L. Kutzbach and E.M. Pfeiffer, 2015. Regulation of methane production, oxidation, and emission by vascular plants and bryophytes in ponds of the northeast Siberian polygonal tundra. Journal of Geophysical Research: Biogeosciences, 120(12): 2525-2541. https://doi.org/10.1002/2015JG003053
  82. Koizumi, Y., S. Takii, M. Nishino and T. Nakajima, 2003. Vertical distributions of sulfate-reducing bacteria and methane-producing archaea quantified by oligonucleotide probe hybridization in the profundal sediment of a mesotrophic lake. FEMS Microbiol Ecol., 44: 101-108. https://doi.org/10.1016/S0168-6496(02)00463-4
  83. Kotelnikova, S. and K. Pedersen, 1998. Distribution and activity of methanogens and homoacetogens in deep granitic aquifers at Aspo Hard Rock Laboratory, Sweden. FEMS Microbiol Ecol., 26(2): 121-134. https://doi.org/10.1016/S0168-6496(98)00028-2
  84. Kotsyurbenko, O.R., K.J. Chin, M.V. Glagolev, S. Stubner, M.V. Simankova, A.N. Nozhevnikova and R. Conrad, 2004. Acetoclastic and hydrogenotrophic methane production and methanogenic populations in an acidic West Siberian peat bog. Environ Microbiol., 6: 1159-1173. https://doi.org/10.1111/j.1462-2920.2004.00634.x
  85. Kuivila, K.M., J.W. Murray, A.H. Devol and P.C. Novelli, 1989. Methane production, sulfate reduction and competition for substrates in the sediments of Lake Washington. Geochim Cosmochim Acta., 53: 409-416. https://doi.org/10.1016/0016-7037(89)90392-X
  86. Kwak, D.H., Y.S. Song, Y.H. Choi, K.M. Kim and Y.H. Jeong, 2023. Influence of sluice gate operation on salinity stratification and hypoxia development in a brackish estuary dam. Regional Studies in Marine Science, 57: 102731.
  87. Lackner, N., A. Hintersonnleitner, A.O. Wagner and P. Illmer, 2018. Hydrogenotrophic methanogenesis and autotrophic growth of Methanosarcina thermophila. Archaea, 2018: Article ID 4712608, 7 p.
  88. Lang, K., J. Schuldes, A. Klingl, A. Poehlein, R. Daniel and A. Brune, 2015. New mode of energy metabolism in the seventh order of methanogens as revealed by comparative genome analysis of "Candidatus Methanoplasma termitum". Applied and environmental microbiology, 81(4): 1338-1352. https://doi.org/10.1128/AEM.03389-14
  89. Le Mer J.L. and P. Roger, 2001. Production, oxidation, emission and consumption of methane by soils: a review. Eur J Soil Biol., 37: 25-50. https://doi.org/10.1016/S1164-5563(01)01067-6
  90. Lee, J., K.T. Park, J.H. Lim, J.E. Yoon and I.N. Kim, 2018. Hypoxia in Korean coastal waters: a case study of the natural Jinhae Bay and artificial Shihwa Bay. Frontiers in Marine Science, 5: 70.
  91. Lee, Y.W., M.O. Park, S.G. Kim, S.S. Kim, B. Khang, J. Choi, D. Lee and S.H. Lee, 2021. Major controlling factors affecting spatiotemporal variation in the dissolved oxygen concentration in the eutrophic Masan Bay of Korea. Regional Studies in Marine Science, 46: 101908.
  92. Leloup, J., A. Loy, N.J. Knab, C. Borowski, M. Wagner and B.B. Jorgensen, 2007. Diversity and abundance of sulfate-reducing microorganisms in the sulfate and methane zones of a marine sediment, Black Sea. Environ Microbiol., 9(1): 131-142. https://doi.org/10.1111/j.1462-2920.2006.01122.x
  93. Lilley, M.D., D.A. Butterfield, E.J. Olson, J.E. Lupton, S.A. Macko and R.E. McDuff, 1993. Anomalous CH4 and NH4+ concentrations at an unsedimented mid-ocean-ridge hydrothermal system. Nature, 364(6432): 45-47. https://doi.org/10.1038/364045a0
  94. Lilley, M.D., J.A. Baross and L.I. Gordon, 1982. Dissolved hydrogen and methane in Saanich Inlet, British Columbia. Deep Sea Res Part A Oceanogr Res Pap., 29(12): 1471-1484. https://doi.org/10.1016/0198-0149(82)90037-1
  95. Lim, H.-S., R.J. Diaz, J.-S. Hong and L.C. Schaffner, 2006. Hypoxia and benthic community recovery in Korean coastal waters. Mar. Pollut. Bull., 52: 1517-1526. DOI: 10.1016/j.marpolbul.2006.05.013.
  96. Lim, J.H., S.H. Lee, J. Park, J. Lee, J.E. Yoon and I.N. Kim, 2018. Coastal Hypoxia in the Jinhae Bay, South Korea: mechanism, spatiotemporal variation, and implications (based on 2011 survey). Journal of Coastal Research, 85(10085): 1481-1485. https://doi.org/10.2112/SI85-297.1
  97. Liu, Y. and W.B. Whitman, 2008. Metabolic, phylogenetic, and ecological diversity of the methanogenic archaea. Ann N Y Acad Sci., 1125(1): 171-189. https://doi.org/10.1196/annals.1419.019
  98. Lovley, D.R. and M.J. Klug, 1986. Model for the distribution of sulfate reduction and methanogenesis in freshwater sediments. Geochim Cosmochim Acta., 50(1): 11-18. https://doi.org/10.1016/0016-7037(86)90043-8
  99. Lovley, D.R. and S. Goodwin, 1988. Hydrogen concentrations as an indicator of the predominant terminal electron-accepting reactions in aquatic sediments. Geochim Cosmochim Acta., 52: 2993-3003. https://doi.org/10.1016/0016-7037(88)90163-9
  100. Lovley, D.R., 1991. Dissimilatory Fe(III) and Mn(IV) reduction. Microbiol Rev., 55: 259-287. https://doi.org/10.1128/mr.55.2.259-287.1991
  101. Lovley, D.R., 2006. Chapter 1.21: Dissimilatory Fe(III)- and Mn(IV)-reducing prokaryotes. In: Prokaryotes (ed: Dworkin M, Falkow S, Rosenberg E, Schleifer KH, Stacke-brandt E). Springer, New York, pp. 635-658.
  102. Luff, R., J. Greinert, K. Wallmann, I. Klaucke and E. Suess, 2005. Simulation of long-term feedbacks from authigenic carbonate crust formation at cold vent sites. Chem Geol., 216: 157-174. https://doi.org/10.1016/j.chemgeo.2004.11.002
  103. Luther III, G.W., T.M. Church and D. Powell, 1991. Sulfur speciation and sulfide oxidation in the water column of the Black Sea. Deep Sea Res Part A Oceanogr Res Pap., 38: S1121-S1137. https://doi.org/10.1016/S0198-0149(10)80027-5
  104. Majumdar, U., N.C. Miller and C.D. Ruppel, 2022. Neural net detection of seismic features related to gas hydrates and free gas accumulations on the northern US Atlantic margin. Interpretation, 10(4): T785-T806. https://doi.org/10.1190/INT-2021-0248.1
  105. Meyer, C.P., I.E. Galbally, Y.P. Wang, I.A. Weeks, K.G. Tolhurst and I.B. Tomkins, 1997. The enhanced emission of greenhouse gases from soil following prescribed burning in a southern eucalyptus forest. Final report to the National Greenhouse Gas Inventory Committee, CSIRO, Division of Atmospheric Research, Aspendale, pp. 1-66.
  106. Milkov, A.V., 2005. Molecular and stable isotope compositions of natural gas hydrates: a revised global dataset and basic interpretations in the context of geological settings. Org Geochem., 36(5): 681-702. https://doi.org/10.1016/j.orggeochem.2005.01.010
  107. Mukhin, V.A. and P.Y. Voronin, 2007. Methane emission during wood fungal decomposition. In Doklady Biological Sciences, 413: 159-160. Nauka/Interperiodica. https://doi.org/10.1134/S0012496607020202
  108. Nayak, D.R., Y.J. Babu, A. Datta and T.K. Adhya, 2007. Methane oxidation in an intensively cropped tropical rice field soil under long-term application of organic and mineral fertilizers. J Environ Qual., 36(6): 1577-1584. https://doi.org/10.2134/jeq2006.0501
  109. Neretin, L.N., M.E. Bottcher, B.B. Jorgensen, I. Volkov, H. Luschen and K. Hilgenfeldt, 2004. Pyritization processes and greigite formation in the advancing sulfidization front in the Upper Pleistocene sediments of the Black Sea. Geochim Cosmochim Acta., 68(9): 2081-2093. https://doi.org/10.1016/S0016-7037(03)00450-2
  110. Nisbet, E.G. and D.J. Piper, 1998. Giant submarine landslides. Nature, 392(6674): 329-330. https://doi.org/10.1038/32765
  111. Nordi, K.A., B. Thamdrup and C.J. Schubert, 2013. Anaerobic oxidation of methane in an iron rich Danish freshwater lake sediment. Limnol Oceanogr., 58: 546-554. https://doi.org/10.4319/lo.2013.58.2.0546
  112. Nozhevnikova, A.N., K. Zepp, F. Vazquez, A.J.B. Zehnder and C. Holliger, 2003. Evidence for the existence of psychrophilic methanogenic communities in anoxic sediments of deep lakes. Appl Environ Microbiol., 69(3): 1832-1835. https://doi.org/10.1128/AEM.69.3.1832-1835.2003
  113. Oertel, C., J. Matschullat, K. Zurba, F. Zimmermann and S. Erasmi, 2016. Greenhouse gas emissions from soils - a review. Chem Erde-Geochem., 76(3): 327-352. https://doi.org/10.1016/j.chemer.2016.04.002
  114. Omelchenko, M.B., L.V. Vasilieva, G.A. Zavarzin, N.D. Savelieva, A.M. Lysenko, L.L. Mityushina, V.N. Khmelenina and Y.A. Trotsenko, 1996. A novel psychrophilic methanotroph of the genus Methylobacter. Mikrobiologiya (English translation), 65: 339-343.
  115. Orcutt, B., V. Samarkin, A. Boetius and S. Joye, 2008. On the relationship between methane production and oxidation by anaerobic methanotrophic communities from cold seeps of the Gulf of Mexico. Environ Microbiol., 10: 1108-1117. https://doi.org/10.1111/j.1462-2920.2007.01526.x
  116. Oremland, R.S., L.G. Miller, C.W. Colbertson, S.W. Robinson, R.L. Smith, D. Lovley and M. Sargent, 1993. Aspects of the biogeochemistry of methane in Mono Lake and the Mono Basin of California. In: Biogeochemistry of global change. Springer, Boston, MA, pp. 704-741.
  117. Oremland, R.S., M.J. Whiticar, F.E. Strohmaier and R.P. Kiene, 1988. Bacterial ethane formation from reduced, ethylated sulfur compounds in anoxic sediments. Geochim Cosmochim Acta., 52(7): 1895-1904. https://doi.org/10.1016/0016-7037(88)90013-0
  118. Perez-Coronel, E. and J. Michael Beman, 2022. Multiple sources of aerobic methane production in aquatic ecosystems include bacterial photosynthesis. Nat Commun., 13: 6454.
  119. Price, P.B. and T. Sowers, 2004. Temperature dependence of metabolic rates for microbial growth, maintenance, and survival. Proc Natl Acad Sci USA, 101(13): 4631-4636. https://doi.org/10.1073/pnas.0400522101
  120. Ra, K., J.K. Kim, E.S. Kim, K.T. Kim, J.M. Lee, S.K. Kim, E.Y. Kim, S.Y. Lee and E.J. Park, 2013. Evaluation of spatial and temporal variations of water quality in Lake Shihwa and outer Sea by using water quality index in Korea: A case study of influence of tidal power plant operation. J. Korean Soc. Mar. Environ. Energy., 16: 102-114. https://doi.org/10.7846/JKOSMEE.2013.16.2.102
  121. Raghoebarsing, A.A., A. Pol, K.T. Van de Pas-Schoonen, A.J.P. Smolders, K.F. Ettwig, I. Rijpman, S. Schouten, J.S. Sinninge Damste, H.J.M. Op den Camp, M.S.M. Jetten and M. Strous, 2006. A microbial consortium couples anaerobic methane oxidation to denitrification. Nature, 440: 918-921. https://doi.org/10.1038/nature04617
  122. Ragsdale, S.W. and M. Kumar, 1996. Nickel-containing carbon monoxide dehydrogenase/acetyl-CoA synthase. Chem Rev 96: 2515-2539. https://doi.org/10.1021/cr950058+
  123. Reeburgh, W.S., 1996. Soft spots in the global methane budget. In: Microbial growth on C1 compounds (ed: Lidstrom ME, Tabita FR). Kluwer, Dordrecht, pp. 334-342.
  124. Reeburgh, W.S., 2007. Oceanic methane biogeochemistry. Chem Rev., 107(2): 486-513. https://doi.org/10.1021/cr050362v
  125. Reeburgh, W.S., B.B. Ward, S.C. Whalen, K.A. Sandbeck, K.A. Kilpatrickt and L.J. Kerkhof, 1991. Black Sea methane geochemistry. Deep Sea Research Part A. Oceanogr Res Pap., 38: S1189-S1210. https://doi.org/10.1016/S0198-0149(10)80030-5
  126. Reeburgh, W.S., S.C. Whalen and M.J. Alperin, 1993. The role of methylotrophy in the global methane budget. In: Microbial growth on C-1 compounds (ed: Murrell JC, Kelly DP). Intercept Press, Andover, pp. 1-14.
  127. Reed, D.C., B.R. Deemer, S. van Grinsven and J.A. Harrison, 2017. Are elusive anaerobic pathways key methane sinks in eutrophic lakes and reservoirs? Biogeochemistry, 134(1): 29-39. https://doi.org/10.1007/s10533-017-0356-3
  128. Regnier, P., A.W. Dale, S. Arndt, D.E. LaRowe, J. Mogollon and P. Van Cappellen, 2011. Quantitative analysis of anaerobic oxidation of methane (AOM) in marine sediments: a modeling perspective. Earth Sci Rev., 106(1-2): 105-130. https://doi.org/10.1016/j.earscirev.2011.01.002
  129. Rehder, G., R.S. Keir, E. Suess and M. Rhein, 1999. Methane in the northern Atlantic controlled by microbial oxidation and atmospheric history. Geophys Res Lett., 26(5): 587-590. https://doi.org/10.1029/1999GL900049
  130. Repeta, D.J., S. Ferron, O.A. Sosa, C.G. Johnson, L.D. Repeta, M. Acker, E.F. DeLong and D.M. Karl, 2016. Marine methane paradox explained by bacterial degradation of dissolved organic matter. Nature Geoscience, 9(12): 884.
  131. Rivkina, E., K. Laurinavichius, J. McGrath, J. Tiedje, V. Shcherbakova and D. Gilichinsky, 2004. Microbial life in permafrost. Adv Space Res., 33(8): 1215-1221. https://doi.org/10.1016/j.asr.2003.06.024
  132. Rivkina, E.M., K.S. Laurinavichus, D.A. Gilichinsky and V.A. Shcherbakova, 2002. Methane generation in permafrost sediments. Dokl Biol Sci., 383(1-6): 179-181.  https://doi.org/10.1023/A:1015366613580
  133. Rother, M. and W.W. Metcalf, 2004. Anaerobic growth of Methanosarcina acetivorans C2A on carbon monoxide: an unusual way of life for a methanogenic archaeon. Proc Natl Acad Sci U S A., 101(48): 16929-16934. https://doi.org/10.1073/pnas.0407486101
  134. Ruppel, C.D. and J.D. Kessler, 2017. The interaction of climate change and methane hydrates. Reviews of Geophysics, 55(1): 126-168. https://doi.org/10.1002/2016RG000534
  135. Ruppel, C.D., 2011. Methane hydrates and contemporary climate change. Nature Eduction Knowledge, 2(12): 12.
  136. Scheller, S., H. Yu, G.L. Chadwick, S.E. McGlynn and V.J. Orphan, 2016., Artificial electron acceptors decouple archaeal methane oxidation from sulfate reduction. Science, 351(6274): 703-707. https://doi.org/10.1126/science.aad7154
  137. Schink, B., 1997. Energetics of syntrophic cooperation in methanogenic degradation. Microbiol Mol Biol Rev., 61(2): 262-280. https://doi.org/10.1128/mmbr.61.2.262-280.1997
  138. Schonheit, P., H. Keweloh and R.K. Thauer, 1981. Factor F420 degradation in Methanobacterium thermoautotrophicum during exposure to oxygen. FEMS Microbiol Lett., 12: 347-349. https://doi.org/10.1111/j.1574-6968.1981.tb07671.x
  139. Schubert, C.J., E. Durisch-Kaiser, C.P. Holzner, L. Klauser, B. Wehrli, O. Schmale, J. Greinert, D.F. McGinnis, M. De Batist and R. Kipfer, 2006. Methanotrophic microbial communities associated with bubble plumes above gas seeps in the Black Sea. Geochem Geophys Geosyst., 7: Q04002.
  140. Schubert, C.J., F. Vazquez, T. Losekann-Behrens, K. Knittel, M. Tonolla and A. Boetius, 2011. Evidence for anaerobic oxidation of methane in sediments of a freshwater system (Lago di Cadagno). FEMS Microbiol Ecol., 76: 26-38. https://doi.org/10.1111/j.1574-6941.2010.01036.x
  141. Schutz, H., W. Seiler and R. Conrad, 1989. Processes involved in formation and emission of methane in rice paddies. Biogeochemistry, 7(1): 33-53. https://doi.org/10.1007/BF00000896
  142. Scranton, M.I. and P.G. Brewer, 1977. Occurrence of methane in the near surface waters of the western subtropical North-Atlantic. Deep-Sea Res., 24: 127-138. https://doi.org/10.1016/0146-6291(77)90548-3
  143. Seller, W. and R. Conrad, 1987. Contribution of tropical ecosystems to the global budget of trace gases, especially CH4, H2, CO and N2O. In: The Geophysiology of Amazonia. R Dickenson(ed) John Wiley, New York, pp. 133-160.
  144. Shannon, R.D., J.R. White, J.E. Lawson and B.S. Gilmour, 1996. Methane efflux from emergent vegetation in peatlands. J Ecol., 84(2): 239-246. https://doi.org/10.2307/2261359
  145. Shiller, A.M., E.W. Chan, D.J. Joung, M.C. Redmond and J.D. Kessler, 2017. Light rare earth element depletion during Deepwater Horizon blowout methanotrophy. Scientific Reports, 7(1): 10389.
  146. Sikora, A., A. Detman, A. Chojnacka and M.K. Blaszczyk, 2017. Anaerobic digestion: I. A common process ensuring energy flow and the circulation of matter in ecosystems. II. A tool for the production of gaseous biofuels. In:(ed.) Jozala AF, Fermentation processes. InTech Rijeka, Croatia, Chapter 14, pp. 271-301.
  147. Sivan, O., M. Adler, A. Pearson, F. Gelman, I. Bar-Or, S.G. John and W. Eckert, 2011. Geochemical evidence for iron-mediated anaerobic oxidation of methane. Limnol Oceanogr., 56: 1536-1544. https://doi.org/10.4319/lo.2011.56.4.1536
  148. Smemo, K.A. and J.B. Yavitt, 2011. Anaerobic oxidation of methane: an underappreciated aspect of methane cycling in peatland ecosystems? Biogeosciences, 8: 779-793. https://doi.org/10.5194/bg-8-779-2011
  149. Sorokin, D.Y., B.E. Jones and J.G. Kuenen, 2000. A novel obligately methylotrophic, methane-oxidizing Methylomicrobium species from a highly alkaline environment. Extremophiles, 4: 145-155. https://doi.org/10.1007/s007920070029
  150. Stigliani, W.M., 1988. Changes in valued "capacities" of soils and sediments as indicators of nonlinear and time-delayed environmental effects. Environ Monit Assess., 10(3): 245-307. https://doi.org/10.1007/BF00395083
  151. Strom, L., T. Tagesson, M. Mastepanov and T.R. Christensen, 2012. Presence of Eriophorum scheuchzeri enhances substrate availability and methane emission in an Arctic wetland, Soil Biol. Biochemist., 45: 61-70. https://doi.org/10.1016/j.soilbio.2011.09.005
  152. Stumm, W. and J.J. Morgan, 1998. Aquatic chemistry: chemical equilibria and rates in natural waters. John Wiley and Sons, pp. 425-515.
  153. Takai, K., K. Nakamura, T. Toki, U. Tsunogai, M. Miyazaki, J. Miyazaki and K. Horikoshi, 2008. Cell proliferation at 122 degrees C and isotopically heavy CH4 production by a hyperthermophilic methanogen under high-pressure cultivation. Proc Natl Acad Sci U S A., 105(31): 10949. 
  154. Templeton, A.S., K.H. Chu, L. Alvarez-Cohen and M.E. Conrad, 2006. Variable carbon isotope fractionation expressed by aerobic CH4-oxidizing bacteria. Geochim Cosmochim Acta., 70: 1739-1752. https://doi.org/10.1016/j.gca.2005.12.002
  155. Terazawa, K., S. Ishizuka, T. Sakatac, K. Yamada and M. Takahashi, 2007. Methane emissions from stems of Fraxinus mandshurica var. japonica trees in a floodplain forest. Soil Biol Biochem., 39: 2689-2692. https://doi.org/10.1016/j.soilbio.2007.05.013
  156. Thauer, R.K. and S. Shima, 2008. Methane as fuel for anaerobic organisms. Ann N Y Acad Sci., 1125: 158-170. https://doi.org/10.1196/annals.1419.000
  157. Thauer, R.K., 1998. Biochemistry of methanogenesis: a tribute to Marjory Stephenson: 1998 Marjory Stephenson prize lecture. Microbiology, 144(9): 2377.
  158. Topp, E. and E. Pattey, 1997. Soils as sources and sinks for atmospheric methane. Can J Soil Sci., 77(2): 167-177. https://doi.org/10.4141/S96-107
  159. Torres, M.E., J. McManus, D.E. Hammond, M.A. de Angelis, K.U. Heeschen, S.L. Colbert, M.D. Tyron, K.M. Brown and E. Suess, 2002. Fluid and chemical fluxes in and out of sediments hosting methane hydrate deposits on hydrate ridge, OR I: hydrological provinces. Earth Planet Sci Lett., 201: 525-540. https://doi.org/10.1016/S0012-821X(02)00733-1
  160. Tyler, S.C., R.S. Bilek, R.L. Sass and F.M. Fisher, 1997. Methane oxidation and pathways of production in a Texas paddy field deduced from measurements of flux, δ l3C, and δ D of CH4. Glob Biogeochem Cycles., 11(3): 323-348. https://doi.org/10.1029/97GB01624
  161. Valentine, D.L. and W.S. Reeburgh, 2000. New perspectives on anaerobic methane oxidation. Environ Microbiol., 2: 477-484. https://doi.org/10.1046/j.1462-2920.2000.00135.x
  162. Valentine, D.L., 2002. Biogeochemistry and microbial ecology of methane oxidation in anoxic environments. Antonie Van Leeuwenhoek, 81: 271-282. https://doi.org/10.1023/A:1020587206351
  163. Valentine, D.L., 2011. Emerging topics in marine methane biogeochemistry. Annual Review of Marine Science, 3: 147-171. https://doi.org/10.1146/annurev-marine-120709-142734
  164. Valentine, D.L., A. Chidthaisong, A. Rice, W.S. Reeburgh and S.C. Tyler, 2004. Carbon and hydrogen isotope fractionation by moderately thermophilic methanogens. Geochim Cosmochim Acta., 68: 1571-1590. https://doi.org/10.1016/j.gca.2003.10.012
  165. Wallmann, K., E. Pinero, E. Burwicz, M. Haeckel, C. Hensen, A. Dale and L. Ruepke, 2012. The global inventory of methane hydrate in marine sediments: a theoretical approach. Energies., 5(12): 2449-2498. https://doi.org/10.3390/en5072449
  166. Wallmann, K., G. Aloisi, M. Haeckel, A. Obzhirov, G. Pavlova and P. Tishchenko, 2006. Kinetics of organic matter degradation, microbial methane generation, and gas hydrate formation in anoxic marine sediments. Geochimica Et Cosmochimica Acta., 70(15): 3905-3927. https://doi.org/10.1016/j.gca.2006.06.003
  167. Wang, D.T., P.V. Welander and S. Ono, 2016. Fractionation of the methane isotopologues 13CH4, 12CH3D, and 13CH3D during aerobic oxidation of methane by Methylococcus capsulatus (Bath). Geochimica et Cosmochimica Acta 192: 186-202. https://doi.org/10.1016/j.gca.2016.07.031
  168. Wang, J.S., M.B. McElroy, C.M. Spivakovsky and D.B. Jones, 2002. On the contribution of anthropogenic Cl to the increase in δ13C of atmospheric methane. Global Biogeochem Cycles, 16(3): 1047.
  169. Wartiainen, I., A.G. Hestnes, I. McDonald and M.M. Svenning, 2006. Methylocystis rosea sp. nov., a novel methanotrophic bacterium from Arctic wetland soil, Svalbard, Norway(78°N). Int J Syst Evol Microbiol., 56: 541-547. https://doi.org/10.1099/ijs.0.63912-0
  170. Watanabe, A., T. Takeda and M. Kimura, 1999. Evaluation of origins of CH4 carbon emitted from rice paddies. Journal of Geophysical Research: Atmospheres, 104(D19): 23623-23629. https://doi.org/10.1029/1999JD900467
  171. Weber, K., M.M. Urrutia, P.F. Churchill, R.K. Kukkadapu and E.E. Roden, 2006. Anaerobic redox cycling of iron by freshwater sediment microorganisms. Environ Microbiol., 8: 100-113. https://doi.org/10.1111/j.1462-2920.2005.00873.x
  172. Weber, T., N.A. Wiseman and A. Kock, 2019. Global ocean methane emissions dominated by shallow coastal waters. Nature communications, 10(1): 4584.
  173. Whiticar, M.J. and H. Schaefer, 2007. Constraining past global tropospheric methane budgets with carbon and hydrogen isotope ratios in ice. Philos Trans R Soc Lond A: Math Phys Eng Sci., 365(1856): 1793-1828. https://doi.org/10.1098/rsta.2007.2048
  174. Whiticar, M.J., 1978. Relationships of gases and fluids during early diagenesis in some marine sediments. In: Sonderforschungsbereiche 95 Wechselwirkung Meer-Meeresboden Report 137, Universitat Kiel 152 pp.
  175. Whiticar, M.J., 2020. The biogeochemical methane cycle. Hydrocarbons, oils and lipids: Diversity, origin, chemistry and fate, 669-746. 
  176. Whiticar, M.J., E. Faber and M. Schoell, 1986. Biogenic methane formation in marine and freshwater environments: CO2 reduction vs. acetate fermentation - isotope evidence. Geochim Cosmochim Acta., 50: 693-709. https://doi.org/10.1016/0016-7037(86)90346-7
  177. Whitman, W.B., T.L. Bowen and D.R. Boone, 2006. The methanogenic bacteria. In The Prokaryotes: Vol. 3: Archaea Bacteria: Firmicutes, Actinomycetes (ed) S Falkow, E Rosenberg, K-H Schleifer, E Stackebrandt, Springer, Berlin, Chapter 9: 165-207.
  178. Zeng, X., J. Birrien, Y. Fouquet, G. Cherkashov, M. Jebbar, J. Querellou and D. Prieur, 2009. Pyrococcus CH1, an obligate piezophilic hyperthermophile: Extending the upper pressure-temperature limits for life. ISME J., 3(7): 873-874. https://doi.org/10.1038/ismej.2009.21
  179. Zhang, G., W. Zhang, H. Yu, J. Ma, H. Xu and K. Yagi, 2014. Fraction of CH4 oxidized in paddy field measured by stable carbon isotopes. Plant Soil., 389(1-2): 349-359. https://doi.org/10.1007/s11104-014-2365-5
  180. Zhu, J., Q. Wang, M. Yuan, G.Y.A. Tan, F. Sun, C. Wang, W. Wu and P.H. Lee, 2016. Microbiology and potential applications of aerobic methane oxidation coupled to denitrification(AME-D) process: a review. Water Res., 90: 203-215. https://doi.org/10.1016/j.watres.2015.12.020
  181. Zinder, S.H., 1993. Physiological ecology of methanogens. In: Ferry JG (ed) Methanogenesis. Ecology, physiology, biochemistry and genetics. Chapman and Hall, New York, pp. 128-206.
  182. Zinder, S.H. and M. Koch, 1984. Non-aceticlastic methanogenesis from acetate: acetate oxidation by a thermophilic syntrophic coculture. Arch Microbiol., 138(3): 263-272. https://doi.org/10.1007/BF00402133
  183. Korean Statistical Information Service (KOSIS), 2021. 국가 통계포털, 방조제 현황. Available at: https://kosis.kr/statHtml/ (Accessed on 5/18/2023).