DOI QR코드

DOI QR Code

A Provenance Study of Iron Archaeological Sites in the Gyeongsang Province: Petrographic and Geochemical Approaches

경상지역 제철유적의 산지추정 연구: 암석기재학 및 지화학적 접근

  • Jaeguk Jo (Department of Geoenvironmental Sciences, Kongju National University) ;
  • Seojin Kim (Jungwon National Research Institute of Cultural Heritage) ;
  • Jiseon Han (Jungwon National Research Institute of Cultural Heritage) ;
  • Su Kyoung Kim (Jungwon National Research Institute of Cultural Heritage) ;
  • Dongbok Shin (Department of Geoenvironmental Sciences, Kongju National University) ;
  • Byeongmoon Kwak (Jungwon National Research Institute of Cultural Heritage) ;
  • Juhyun Hong (Jungwon National Research Institute of Cultural Heritage) ;
  • Byeongyong Yu (Department of Geoenvironmental Sciences, Kongju National University) ;
  • Jinah Lim (Department of Geoenvironmental Sciences, Kongju National University)
  • 조재국 (공주대학교 지질환경과학과) ;
  • 김서진 (국립중원문화재연구소 ) ;
  • 한지선 (국립중원문화재연구소 ) ;
  • 김수경 (국립중원문화재연구소 ) ;
  • 신동복 (공주대학교 지질환경과학과) ;
  • 곽병문 (국립중원문화재연구소 ) ;
  • 홍주현 (국립중원문화재연구소 ) ;
  • 유병용 (공주대학교 지질환경과학과) ;
  • 임진아 (공주대학교 지질환경과학과)
  • Received : 2023.05.17
  • Accepted : 2023.07.06
  • Published : 2023.08.30

Abstract

To infer the provenance of raw iron materials utilized in iron production at the archaeological sites in Gyeongsang province, petrographic and geochemical analyses were conducted for smelting samples and major iron ores sourced from ore deposits. The smelting samples excavated from various iron archaeological sites were classified into different types according to their refining processes, such as iron bloom, iron bloom slag, pig iron, pig iron slag, forging iron flake, smithery iron, iron flake, and arrowhead. These samples exhibited discernable differences in their mineralogical components and texture. The enrichments of major elements such as aluminum and calcium in silicate minerals of the residual slags and the high contents of trace elements such as nickel and copper in some iron-making relics reflect the characteristics of raw iron ores, and thus can be regarded as potential indicators for inferring the provenance of source materials. In particular, the compositional ranges of Pb-Sr isotope ratios for the iron smelting samples were classified into three categories: 1) those exhibiting similar ratios to those of the raw iron ores, 2) those enriched in strontium isotope ratio, and 3) those enriched in both lead and strontium isotope ratios. The observed distinct Pb-Sr isotope characteristics in the iron smelting samples suggest the potential contribution of specific additives being introduced during the high-temperature refining process. These results provide a new perspective on the interpretation of the provenance study of the iron archaeological samples in Gyeongsang province, particularly in terms of the potential contribution of additives on the refining process.

경상지역 제철유적의 원료산지 추정을 위해 제철시료와 주요 철광상 철광석을 대상으로 암석기재학 및 지화학적 특성을 비교 분석하였다. 각 지역에서 발굴된 제철유적 시료는 제련공정 단계에 따라 원료철광석, 괴련철, 괴련철슬래그, 선철, 선철슬래그, 단조박편, 단야철, 철정 및 화살촉으로 분류되었고 각각 상이한 구성광물과 조직을 보였다. 또한 슬래그를 구성하는 규산염광물에서의 알루미늄 및 칼슘 등의 주원소 성분의 농집과 제철유물에서 니켈 및 구리 등의 미량원소 함량이 높은 것은 원료철광석의 특성이 반영된 것으로 잠재적인 제철원료의 산지추정인자로 여겨진다. 특히 제철유적 시료의 납-스트론튬 동위원소비는 크게 1) 원료철광석과 유사한 조성을 보이는 경우, 2) 스트론튬 동위원소비가 부화된 경우, 그리고 3) 납-스트론튬 동위원소비 모두 부화된 경우로 구별되며 이러한 동위원소비 특성은 고온의 제련공정 과정에서 첨가된 특정 조재제와의 혼염 가능성을 시사한다. 이러한 결과는 첨가물이 제련과정에 미치는 잠재적인 기여 측면에서 경상지역 제철유적의 산지추정 해석에 새로운 시각을 제시한다.

Keywords

Acknowledgement

이 연구는 문화재청 국립중원문화재연구소 문화유산조사연구(R&D) 일환으로 수행되었으며, 이에 감사드립니다. 논문에 대해 유익한 비평을 주신 세 분의 심사위원께 감사드립니다.

References

  1. Bae, H.S. (2017) The ancient iron production in the east side of the Nakdong river-focused on Miryang Geumgok historic remains. J. Korean history, v.40, p.5-43. (In Korean with English abstract)  https://doi.org/10.19120/cy.2017.04.40.5
  2. Balassone, G., Boni, M., Di Maio, G. and Villa, I. M. (2009) Characterization of metallic artefacts from the Iron Age culture in Campania (Italy): a multi-analytical study. Periodico Mineral., v.78, p.45-63. doi: 10.2451/2009PM0003 
  3. Benvenuti, M., Dini, A., D'orazio, M., Chiarantini, L., Corretti, A. and Costagliola, P. (2013) The tungsten and tin signature of iron ores from Elba Island (Italy): a tool for provenance studies of iron production in the Mediterranean region. Archaeometry, v.55, p.479-506. doi: 10.1111/j.1475-4754.2012.00692.x 
  4. Brenko, T., Borojevi otari, S., Karavidovi, T., Ruii, S. and Sekelj Ivanan, T. (2021) Geochemical and mineralogical correlations between the bog iron ores and roasted iron ores of the Podravina region, Croatia. CATENA, v.204, p.105353. doi: 10.1016/j.catena.2021.105353 
  5. Brenko, T., Karavidovi, T., Borojevi otari, S. and Sekelj Ivanan, T. (2022) The contribution of geochemical and mineralogical characterization of iron slags in provenance studies in the Podravina region, NE Croatia. Geologia Croatica, v.75, p.165-176. doi: 10.4154/gc.2022.11 
  6. Choi, M.J. (2012) Iron relics of the Korean Peninsula. Cultural Properties Investigation & Research Institute Association, 779p. 
  7. Cline, J.S. (2001) Timing of gold and arsenic sulfide mineral deposition at the Getchell Carlin-type gold deposit, north-central Nevada. Econ. Geol. v.96, p.75-89. doi: 10.2113/gsecongeo.96.1.75 
  8. Coustures, M.P., Beziat, D. and Tollon, F. (2003) The use of trace element analysis of entrapped slag inclusions to establish ore-bar iron links: Examples from two Gallo-Roman iron-making sites in France (Les Martys, Montagne Noire, and Les Ferrys, Loiret). Archaeometry, v.45, p.599-613. doi: 10.1046/j.1475-4754.2003.00131.x 
  9. Degryse, P., Schneider, J.C. and Muchez, P. (2009) Combined Pb-Sr isotopic analysis in provenancing late Roman iron raw materials in the territory of Sagalassos (SW Turkey). Archaeol. Anthropol. Sci., v.1, p.155-159. doi: 10.1007/s12520-009-0010-7 
  10. Devos, W., Senn-Luder, M., Moor, C. and Salter, C. (2000) Laser ablation inductively coupled plasma mass spectrometry (LA-ICP-MS) for spatially resolved trace analysis of early-medieval archaeological iron finds. Fresenius' J. Anal. Chem., v.366, p.873-880. doi: 10.1007/s002160051588 
  11. Esson, J., Stevens, R.H. and Vincent, E.A. (1965) Aspects of the geochemistry of arsenic and antimony, exemplified by the Skaergaard intrusion. Mineral. Mag., v.35, p.88-107. doi: 10.1180/minmag.1965.035.269.12 
  12. Giacometti, F., Rebay, G., Riccardi, M.P., Tarantino, S.C., Tizzoni, C.C. and Tizzoni, M. (2014) Iron Age silicate slags from Val Malenco (Italy): the role of textural and compositional studies in the reconstruction of smelting conditions. Periodico Mineral., v.83, p.329-344. doi: 10.2451/2014PM0018 
  13. Han, J.S. (2018) Research status and assignment on Baekje iron manufacturing process. Baekje Hakbo, v.25 p.31-62. (In Korean with English abstract) 
  14. Han, M.A. (2015) Study of ancient Ulsan Jungsandong regional power. Ulsan Sahka, v.19, p.69-96. (In Korean with English abstract) 
  15. Hedges, R.E.M. and Salter, C.J. (1979) Source determination of iron currency bars through analysis of the slag inclusions. Archaeometry, v.21, p.161-175. doi: 10.1111/j.1475-4754.1979.tb00250.x 
  16. Heo, C.H., Yun, S.T., Choi, S.H., Choi, S.G. and So, C.S. (2003) Copper minerarlization in the Haman-Gunbuk area, Gyeongsangnamdo Province: Fluid inclusion and stable isotope study. Econ. Environ. Geol., v.36. p.75-87. (In Korean with English abstract) 
  17. KIGAM (Korea Institute of Geoscience and Mineral Resources) (2023) Geologic map of Korea 1:50,000. (www.kigam.re.kr) 
  18. Kim, G.S. (2017) Foreign relations based on the Dalcheon relic of Ulsan. Ulsan Sahak, v.21, p.1-23. (In Korean with English abstract) 
  19. Kim, K.B. and Hwang, S.K. (1988) Geological report of the Miryang sheet (1:50,000). Korea Institute of Energy and Resources. 66p. 
  20. Kim, K.H., Park, J.K., Yang, J.M. and Satake, H. (1993) A study on sepentinization of serpentinites from the Ulsan iron mine. J. Korean Inst. Mining Geol., v.26, p.267-278. (In Korean with English abstract) 
  21. Kim, K.I. (2021) A study on the type and the smelting method of an iron masking furnace in the Goryeo Dynasty located in Wano-ri, Chungju. J. Korea Middle Ages Archaeol. Soc., v.10, p.5-43 (In Korean with English abstract) 
  22. Kim, K.I. (2010) A study of analysis of types of iron-manufacturing furnace-On the characteristics of sill iron manufacturing culture. Kyoung-Ju Sahak, v.31, p.35-88. (In Korean with English abstract) 
  23. Kim. K.I. and Lee, N.K. (2016) Archeological interpretation and use about the metallurgical analysis of iron making artifacts. Komunhwa, v.88. p.69-102. (In Korean with English abstract) 
  24. Kim, S.U. (1973) A regional study for developments of Kyeongnam copper metallogenic province. Econ. Environ. Geol., v.6, p.133-170. (In Korean with English abstract) 
  25. Lee, D.H. (2018) Verification of theory of steel production at Byun Han and the meaning. DANGUNHAK KENKYU, v.39, p.93-123. (In Korean with English Abstract). doi: 10.18706/jgds.2018.12.39.93 
  26. Lee, E.W., Han, J.S., Kwak, B.M., Kim, D.W., Kim, E.J., Jeong, N.H. and Han, Y.W. (2016) Natural scientific analysis report on samples excavated from iron remains in Gyeongsang Region. Jungwon National Research Institute of Cultural Heritage, 11-1550159-000041-01, 182p. (In Korean with English abstract) 
  27. Lee, H.G., Mun, H.S. and Oh, M.S. (2007) Economic mineral deposits in Korea. Daewoo Foundation, Acanet, 587p. (In Korean) 
  28. Lee, J.Y., Kim, S.W. and Kim, Y.G. (1992) A geochemical study on Ulsan granite in relation to iron ore deposits in the Gyeongsang basin. J. Korean Inst. Mining Geol., v.25, p.133-143. (In Korean with English abstract) 
  29. Liu, X., Yang, K., Rusk, B., Qiu, Z., Hu, F. and Pironon, J. (2019) Copper sulfide remobilization and mineralization during Paleoproterozoic retrograde metamorphism in the Tongkuangyu copper deposit, North China Craton. Minerals, v.9, p.127. 
  30. Maciag, B.J. and Brenan, J.M. (2020) Speciation of arsenic and antimony in basaltic magmas: Geochim. Cosmochim. Acta, v.276, p.198-218. doi: 10.1016/j.gca.2020.02.022 
  31. Mabuchi, H. and Hirao Y. (1987) Lead isotope ratios of lead ores in East Asia in relation to bronze artifacts, Kokogaku Zasshi, v.73, p.199-245 (In Japanese). 
  32. Matsueda, H. (2013) Information of geology and iron resources in East Russia, with special reference to the estimation on the source of iron ore for ironware in Prehistoric times. Bulletin Hokkaido Univ. Museum, v.6, p.116-129 (In Japanese with English abstract). 
  33. Molofsky, L.J., Killick, D., Ducea, M.N., Macovei, M., Chesley, J.T., Ruiz, J., Thibodeau, A. and Popescu, G.C. (2014) A novel approach to lead isotope provenance studies of tin and bronze: applications to South African, Botswanan and Romanian artifacts. J. Archaeol. Sci., v.50, p.440-450. doi: 10.1016/j.jas.2014.08.006 
  34. Nadoll, P., Angerer, T., Mauk, J.L., French, D., and Walshe, J. (2014) The chemistry of hydrothermal magnetite: A review. Ore Geol. Rev. v.61, p.1-32. doi: 10.1016/j.oregeorev.2013.12.013 
  35. Nadoll, P., Mauk, J.L., Leveille, R.A., and Koenig, A.E. (2015) Geochemistry of magnetite from porphyry Cu and skarn deposits in the southwestern United States. Miner. Depos. v.50, p.493-515. doi: 10.1007/s00126-014-0539-y 
  36. Park, J.K. and Lee, H.Y. (2003) Petrochemistry of the Hongcheon Fe-REE ore deposit in the Hongcheon area, Korea. J. Petrol. Soc. Korea, v.12, p.135-153. (In Korean with English abstract) 
  37. Park, K.H. and Park, H.I. (1980) On the genesis of Ulsan iron-tungsten deposits. Mining Geol., v.13, p.104-116. (In Korean with English abstract) 
  38. Park, Y.D. and Yoon, H.D. (1968) Explanatory text of the geological map of Ulsan sheet(1:50,000). Geological Survey of Korea. 36p. 
  39. Ryu, I.C., Choi, S.G. and Wee, S.M. (2006) An inquiry into the formation and deformation of the Cretaceous Gyeongsang (Kyongsang) Basin, Southeastern Korea. Econ. Environ. Geol., v.39, p.129-149. (In Korean with English abstract) 
  40. Schwab, R., Heger, D., Hoppner, B. and Pernicka, E. (2006) The provenance of iron artefacts from Manching. A multi-technique approach. Archaeometry, v.48, p.433-452. doi: 10.1111/j.1475-4754.2006.00265.x 
  41. Seo, J., Choi, S.G., Kim, D.W., Park, J.W. and Oh, C.W. (2015) A new genetic model for the Triassic Yangyang iron-oxide apatite deposit, South Korea: Constraints from in situ U-Pb and trace element analyses of accessory minerals. Ore Geol. Rev., v.70, p.110-135. doi: 10.1016/j.oregeorev.2015.04.009 
  42. Seong, J.Y. (2018) The aspect of iron production and distribution of Gaya area. Hoseo Sahak, v.85, p.223-259. (In Korean) 
  43. Shin, B.B. (2011) On the change of tombs and steel production in ancient Gimhae. Journal of North-east Asian Cultures, v.26, p.203-222. (In Korean with English abstract) 
  44. Shin, D.B., Jo, J.G., Im, H.K., Lee, S.Y., Kim, H.W., Yeom, K.H., and Yu, B.Y. (2020) Analytical study for raw material provenance of domestic iron artifacts (first-year report). Jungwon National Research Institute of Cultural Heritage, 11-1550159-000061-01, 90p. (In Korean) 
  45. Shin, D.B., Jo, J.G., Im, H.K., Yeom, K.H., Yu, B.Y. and Im, J.A. (2021a) Analytical study for raw material provenance of domestic iron artifacts (second-year report). Jungwon National Research Institute of Cultural Heritage, 11-1550159-000069-01, 93p. (In Korean) 
  46. Shin, W.J., Ryu, J.S., Kim, R.H. and Min, J.S. (2021b) First strontium isotope map of groundwater in South Korea: applications for identifying the geographical origin. Geosci. J., v.25, p.173-181. doi: 10.1007/s12303-020-0013-z 
  47. Son, M.S., (2016) A consideration on Silla potteries with symbol inscription-Focusing on the historic site in Gyeongju Nodongdong 12-. Journal of wooden slips and characters, v.16, p.85-105. (In Korean with English abstract) 
  48. Stepanov, I.S., Weeks, L., Franke, K.A., Overlaet, B., Alard, O., Cable, C.M., Al Aali, Y.Y., Boraik, M., Zein, H. and Grave, P. (2020) The provenance of early Iron Age ferrous remains from southeastern Arabia. J. Archaeol. Sci., v.120, p.105192. doi: 10.1016/j.jas.2020.105192 
  49. Sun, W.D., Zhang, L.P., Guo, J., Li, C.Y., Jiang, Y.H., Zartman, R.E. and Zhang, Z.F. (2016) Origin of the mysterious Yin-Shang bronzes in China indicated by lead isotopes. Scientific Reports, v.6, p.23304. doi: 10.1038/srep23304 
  50. Sung, M.H., (2017) A review on the production workshop of ironware in the Early Choseon dynasty. Ulsan Sahak, v.21, p.25-50. (In Korean with English abstract) 
  51. Wawryk, C.M. and Foden, J.D. (2015) Fe-isotope fractionation in magmatic-hydrothermal mineral deposits: A case study from the Renison Sn-W deposit, Tasmania. Geochim. Cosmochim. Acta, v.150, p.285-298. doi: 10.1016/j.gca.2014.09.044 
  52. Woo, Y.K., Lee, M.S. and Park, H.I. (1982) Studies on the skarn-type ore deposits and skarn minerals in Gyeongnam Province. Ministry of Science & Technology, TRKO200200009015, 73p. (In Korean with English abstract) 
  53. Zhang, Y.B., Wan, B., Wu, F.Y., Zhai, M.G., Wang, T., Zhang, X.H., Li, Q.L., Peng, P. and Hou, Q.L. (2022) Late Cretaceous-early Paleogene magmatism in the Gyeongsang basin, southeast Korea and its implications for middle Paleogene climate change. Journal of Asian Earth Sciences, v.237, p.105346. doi: 10.1016/j.jseaes.2022.105346 
  54. Zhang, Y.B., Zhai, M., Hou, Q.L., Li, T.S., Liu, F., and Hu, B., (2012) Late Cretaceous volcanic rocks and associated granites in Gyeongsang Basin, SE Korea: Their chronological ages and tectonic implications for cratonic destruction of the North China Craton. Journal of Asian Earth Sciences, v.47, p.252-264. doi: 10.1016/j.jseaes.2011.12.011