Acknowledgement
This work was supported in part by the National Research Foundation of Korea (NRF) grant funded by the Korea government (MSIT) (No. 2020R1A4A3079570) and Technology Innovation Program (20014873) funded by the Ministry of Trade, Industry & Energy (MOTIE, Korea). We thank to Mr. Tae Joon Hong for providing smooth supply of pig hearts.
References
- Adhikari, R., Jung, J., Shiwakoti, S., Park, E.-Y., Kim, H.-J., Ko, J.-Y., You, J., Lee, M. and Oak, M.-H. (2023) Capsaicin inhibits aortic valvular interstitial cell calcification via the redox-sensitive NFκB/AKT/ERK1/2 pathway. Biochem. Pharmacol. 212, 115530.
- Adhikari, R., Shiwakoti, S., Ko, J.-Y., Dhakal, B., Park, S.-H., Choi, I. J., Kim, H. J. and Oak, M.-H. (2022) Oxidative stress in calcific aortic valve stenosis: protective role of natural antioxidants. Antioxidants 11, 1169.
- Agidigbi, T. S. and Kim, C. (2019) Reactive oxygen species in osteoclast differentiation and possible pharmaceutical targets of ROS-mediated osteoclast diseases. Int. J. Mol. Sci. 20, 3576.
- Andrews, P., Thyssen, J. and Lorke, D. (1982) The biology and toxicology of molluscicides, bayluscide. Pharmacol. Ther. 19, 245-295. https://doi.org/10.1016/0163-7258(82)90064-X
- Beazley, K. E., Deasey, S., Lima, F. and Nurminskaya, M. V. (2012) Transglutaminase 2-mediated activation of β-catenin signaling has a critical role in warfarin-induced vascular calcification. Arterioscler. Thromb. Vasc. Biol. 32, 123-130. https://doi.org/10.1161/ATVBAHA.111.237834
- Benjamin, E. J., Muntner, P., Alonso, A., Bittencourt, M. S., Callaway, C. W., Carson, A. P., Chamberlain, A. M., Chang, A. R., Cheng, S., Das, S. R., Delling, F. N., Djousse, L., Elkind, M. S. V., Ferguson, J. F., Fornage, M., Jordan, L. C., Khan, S. S., Kissela, B. M., Knutson, K. L., Kwan, T. W., Lackland, D. T., Lewis, T. T., Lichtman, J. H., Longenecker, C. T., Loop, M. S., Lutsey, P. L., Martin, S. S., Matsushita, K., Moran, A. E., Mussolino, M. E., O'flaherty, M., Pandey, A., Perak, A. M., Rosamond, W. D., Roth, G. A., Sampson, U. K. A., Satou, G. M., Schroeder, E. B., Shah, S. H., Spartano, N. L., Stokes, A., Tirschwell, D. L., Tsao, C. W., Turakhia, M. P., Vanwagner, L. B., Wilkins, J. T., Wong, S. S. and Virani, S. S.; American Heart Association Council on Epidemiology and Prevention Statistics Committee and Stroke Statistics Subcommittee (2019) Heart disease and stroke statistics-2019 update: a report from the American Heart Association. Circulation 139, e56-e528. https://doi.org/10.1161/CIR.0000000000000659
- Bogdanova, M., Kostina, A., Zihlavnikova Enayati, K., Zabirnyk, A., Malashicheva, A., Stenslokken, K.-O., Sullivan, G. J., Kaljusto, M.-L., Kvitting, J.-P. E., Kostareva, A., Vaage, J. and Rutkovskiy, A. (2018) Inflammation and mechanical stress stimulate osteogenic differentiation of human aortic valve interstitial cells. Front. Physiol. 9, 1635.
- Bogdanova, M., Zabirnyk, A., Malashicheva, A., Enayati, K. Z., Karlsen, T. A., Kaljusto, M.-L., Kvitting, J.-P. E., Dissen, E., Sullivan, G. J., Kostareva, A., Stenslokken, K.-O., Rutkovskiy, A. and Vaage, J. (2019) Interstitial cells in calcified aortic valves have reduced differentiation potential and stem cell-like properties. Sci. Rep. 9, 12934.
- Branchetti, E., Sainger, R., Poggio, P., Grau, J. B., Patterson-Fortin, J., Bavaria, J. E., Chorny, M., Lai, E., Gorman, R. C., Levy, R. J. and Ferrari, G. (2013) Antioxidant enzymes reduce DNA damage and early activation of valvular interstitial cells in aortic valve sclerosis. Arterioscler. Thromb. Vasc. Biol. 33, e66-e74. https://doi.org/10.1161/ATVBAHA.112.300177
- Byon, C. H., Javed, A., Dai, Q., Kappes, J. C., Clemens, T. L., Darley-Usmar, V. M., Mcdonald, J. M. and Chen, Y. (2008) Oxidative stress induces vascular calcification through modulation of the osteogenic transcription factor Runx2 by AKT signaling. J. Biol. Chem. 283, 15319-15327. https://doi.org/10.1074/jbc.M800021200
- Caira, F. C., Stock, S. R., Gleason, T. G., Mcgee, E. C., Huang, J., Bonow, R. O., Spelsberg, T. C., Mccarthy, P. M., Rahimtoola, S. H. and Rajamannan, N. M. (2006) Human degenerative valve disease is associated with up-regulation of low-density lipoprotein receptor-related protein 5 receptor-mediated bone formation. J. Am. Coll. Cardiol. 47, 1707-1712. https://doi.org/10.1016/j.jacc.2006.02.040
- Caraci, F., Gili, E., Calafiore, M., Failla, M., La Rosa, C., Crimi, N., Sortino, M. A., Nicoletti, F., Copani, A. and Vancheri, C. (2008) TGF-β1 targets the GSK-3β/β-catenin pathway via ERK activation in the transition of human lung fibroblasts into myofibroblasts. Pharmacol. Res. 57, 274-282. https://doi.org/10.1016/j.phrs.2008.02.001
- Chang, Y.-W., Yeh, T.-K., Lin, K.-T., Chen, W.-C. and Yao, H.-T. (2006) Pharmacokinetics of anti-SARS-CoV agent niclosamide and its analogs in rats. J. Food Drug Anal. 14, 15.
- Chaudhary, S. C., Kuzynski, M., Bottini, M., Beniash, E., Dokland, T., Mobley, C. G., Yadav, M. C., Poliard, A., Kellermann, O. and Millan, J. L. (2016) Phosphate induces formation of matrix vesicles during odontoblast-initiated mineralization in vitro. Matrix Biol. 52, 284-300. https://doi.org/10.1016/j.matbio.2016.02.003
- Chen, W., Mook, R. A., Jr., Premont, R. T. and Wang, J. (2018) Niclosamide: beyond an antihelminthic drug. Cell. Signal. 41, 89-96. https://doi.org/10.1016/j.cellsig.2017.04.001
- Chu, Y., Lund, D. D., Weiss, R. M., Brooks, R. M., Doshi, H., Hajj, G. P., Sigmund, C. D. and Heistad, D. D. (2013) Pioglitazone attenuates valvular calcification induced by hypercholesterolemia. Arterioscler. Thromb. Vasc. Biol. 33, 523-532. https://doi.org/10.1161/ATVBAHA.112.300794
- Ding, Q., Xia, W., Liu, J.-C., Yang, J.-Y., Lee, D.-F., Xia, J., Bartholomeusz, G., Li, Y., Pan, Y., Li, Z., Bargou, R. C., Qin, J., Lai, C.-C., Tsai, F.-J., Tsai, C.-H. and Hung, M.-C. (2005) Erk associates with and primes GSK-3β for its inactivation resulting in upregulation of β-catenin. Mol. Cell 19, 159-170. https://doi.org/10.1016/j.molcel.2005.06.009
- Dweck, M. R., Boon, N. A. and Newby, D. E. (2012) Calcific aortic stenosis: a disease of the valve and the myocardium. J. Am. Coll. Cardiol. 60, 1854-1863. https://doi.org/10.1016/j.jacc.2012.02.093
- Ge, C., Xiao, G., Jiang, D. and Franceschi, R. T. (2007) Critical role of the extracellular signal-regulated kinase-MAPK pathway in osteoblast differentiation and skeletal development. The J. Cell Biol. 176, 709-718. https://doi.org/10.1083/jcb.200610046
- Goody, P. R., Hosen, M. R., Christmann, D., Niepmann, S. T., Zietzer, A., Adam, M., Bonner, F., Zimmer, S., Nickenig, G. and Jansen, F. (2020) Aortic valve stenosis. Arterioscler. Thromb. Vasc. Biol. 40, 885-900. https://doi.org/10.1161/ATVBAHA.119.313067
- Goto, S., Rogers, M. A., Blaser, M. C., Higashi, H., Lee, L. H., Schlotter, F., Body, S. C., Aikawa, M., Singh, S. A. and Aikawa, E. (2019) Standardization of human calcific aortic valve disease in vitro modeling reveals passage-dependent calcification. Front. Cardiovasc. Med. 6, 49.
- Gould, R. A. and Butcher, J. T. (2010) Isolation of valvular endothelial cells. J. Vis. Exp. (46), 2158.
- Greenberg, H. Z. E., Zhao, G., Shah, A. M. and Zhang, M. (2022) Role of oxidative stress in calcific aortic valve disease and its therapeutic implications. Cardiovasc. Res. 118, 1433-1451. https://doi.org/10.1093/cvr/cvab142
- Gu, X. and Masters, K. S. (2009) Role of the MAPK/ERK pathway in valvular interstitial cell calcification. Am. J. Physiol. Heart Circ. Physiol. 296, H1748-H1757. https://doi.org/10.1152/ajpheart.00099.2009
- Hou, Q.-C., Wang, J.-W., Yuan, G., Wang, Y.-P., Xu, K.-Q., Zhang, L., Xu, X.-F., Mao, W.-J. and Liu, Y. (2021) AGEs promote calcification of HASMCs by mediating Pi3k/AKT-GSK3β signaling. Front. Biosci.-Landmark 26, 125-134. https://doi.org/10.52586/4929
- Houslay, E. S., Cowell, S. J., Prescott, R. J., Reid, J., Burton, J., Northridge, D. B., Boon, N. A. and Newby, D. E. (2006) Progressive coronary calcification despite intensive lipid-lowering treatment: a randomised controlled trial. Heart 92, 1207-1212. https://doi.org/10.1136/hrt.2005.080929
- Huang, H. W., Bow, Y. D., Wang, C. Y., Chen, Y. C., Fu, P. R., Chang, K. F., Wang, T. W., Tseng, C. H., Chen, Y. L. and Chiu, C. C. (2020) DFIQ, a novel quinoline derivative, shows anticancer potential by inducing apoptosis and autophagy in NSCLC cell and in vivo zebrafish xenograft models. Cancers (Basel) 12, 1348.
- Hutcheson, J. D., Aikawa, E. and Merryman, W. D. (2014) Potential drug targets for calcific aortic valve disease. Nat. Rev. Cardiol. 11, 218-231. https://doi.org/10.1038/nrcardio.2014.1
- Incalza, M. A., D'oria, R., Natalicchio, A., Perrini, S., Laviola, L. and Giorgino, F. (2018) Oxidative stress and reactive oxygen species in endothelial dysfunction associated with cardiovascular and metabolic diseases. Vascul. Pharmacol. 100, 1-19. https://doi.org/10.1016/j.vph.2017.05.005
- Jang, W.-G., Kim, E.-J., Kim, D.-K., Ryoo, H.-M., Lee, K.-B., Kim, S.-H., Choi, H.-S. and Koh, J.-T. (2012) BMP2 protein regulates osteocalcin expression via Runx2-mediated Atf6 gene transcription. J. Biol. Chem. 287, 905-915. https://doi.org/10.1074/jbc.M111.253187
- Kang, S.-M., Lim, S., Song, H., Chang, W., Lee, S., Bae, S.-M., Chung, J. H., Lee, H., Kim, H.-G., Yoon, D.-H., Kim, T. W., Jang, Y., Sung, J.-M., Chung, N.-S. and Hwang, K.-C. (2006) Allopurinol modulates reactive oxygen species generation and Ca2+ overload in ischemia-reperfused heart and hypoxia-reoxygenated cardiomyocytes. Eur. J. Pharmacol. 535, 212-219. https://doi.org/10.1016/j.ejphar.2006.01.013
- Khalid, S., Yamazaki, H., Socorro, M., Monier, D., Beniash, E. and Napierala, D. (2020) Reactive oxygen species (ROS) generation as an underlying mechanism of inorganic phosphate (Pi)-induced mineralization of osteogenic cells. Free Radic. Biol. Med. 153, 103-111. https://doi.org/10.1016/j.freeradbiomed.2020.04.008
- Kraler, S., Blaser, M. C., Aikawa, E., Camici, G. G. and Luscher, T. F. (2021) Calcific aortic valve disease: from molecular and cellular mechanisms to medical therapy. Eur. Heart J. 43, 683-697. https://doi.org/10.1093/eurheartj/ehab757
- Lassegue, B., Martin, A. S. and Griendling, K. K. (2012) Biochemistry, physiology, and pathophysiology of NADPH oxidases in the cardiovascular system. Circ. Res. 110, 1364-1390. https://doi.org/10.1161/CIRCRESAHA.111.243972
- Lerman, D. A., Prasad, S. and Alotti, N. (2015) Calcific aortic valve disease: molecular mechanisms and therapeutic approaches. Eur. Cardiol. 10, 108-112. https://doi.org/10.15420/ecr.2015.10.2.108
- Li, Y., Zhu, H., Kuppusamy, P., Roubaud, V., Zweier, J. L. and Trush, M. A. (1998) Validation of lucigenin (bis-N-methylacridinium) as a chemilumigenic probe for detecting superoxide anion radical production by enzymatic and cellular systems. J. Biol. Chem. 273, 2015-2023. https://doi.org/10.1074/jbc.273.4.2015
- Liang, L., Huang, M., Xiao, Y., Zen, S., Lao, M., Zou, Y., Shi, M., Yang, X. and Xu, H. (2015) Inhibitory effects of niclosamide on inflammation and migration of fibroblast-like synoviocytes from patients with rheumatoid arthritis. Inflamm. Res. 64, 225-233. https://doi.org/10.1007/s00011-015-0801-5
- Liberman, M., Bassi, E., Martinatti, M. K., Lario, F. C., Wosniak, J., Jr., Pomerantzeff, P. M. and Laurindo, F. R. (2008) Oxidant generation predominates around calcifying foci and enhances progression of aortic valve calcification. Arterioscler. Thromb. Vasc. Biol. 28, 463-470. https://doi.org/10.1161/ATVBAHA.107.156745
- Liu, F.-L., Chen, C.-L., Lee, C.-C., Wu, C.-C., Hsu, T.-H., Tsai, C.-Y., Huang, H.-S. and Chang, D.-M. (2017) The simultaneous inhibitory effect of niclosamide on RANKL-induced osteoclast formation and osteoblast differentiation. Int. J. Med. Sci. 14, 840-852. https://doi.org/10.7150/ijms.19268
- Liu, H., Wang, L., Pan, Y., Wang, X., Ding, Y., Zhou, C., Shah, A. M., Zhao, G. and Zhang, M. (2020) Celastrol alleviates aortic valve calcification via inhibition of NADPH oxidase 2 in valvular interstitial cells. JACC Basic Transl. Sci. 5, 35-49. https://doi.org/10.1016/j.jacbts.2019.10.004
- Liu, J., Xiao, Q., Xiao, J., Niu, C., Li, Y., Zhang, X., Zhou, Z., Shu, G. and Yin, G. (2022) Wnt/β-catenin signalling: function, biological mechanisms, and therapeutic opportunities. Signal Transduct. Target. Ther. 7, 3.
- Lu, C., Dong, X., Yu, W. P., Ding, J. L., Yang, W., Gong, Y., Liu, J. C., Tang, Y. H., Xu, J. J. and Zhou, J. L. (2020) Inorganic phosphate-osteogenic induction medium promotes osteogenic differentiation of valvular interstitial cells via the BMP-2/Smad1/5/9 and RhoA/ROCK-1 signaling pathways. Am. J. Transl. Res. 12, 3329-3345.
- Miller, J. D., Chu, Y., Brooks, R. M., Richenbacher, W. E., Pena-Silva, R. and Heistad, D. D. (2008) Dysregulation of antioxidant mechanisms contributes to increased oxidative stress in calcific aortic valvular stenosis in humans. J. Am. Coll. Cardiol. 52, 843-850. https://doi.org/10.1016/j.jacc.2008.05.043
- Munzel, T., Camici, G. G., Maack, C., Bonetti, N. R., Fuster, V. and Kovacic, J. C. (2017) Impact of oxidative stress on the heart and vasculature: part 2 of a 3-part series. J. Am. Coll. Cardiol. 70, 212-229. https://doi.org/10.1016/j.jacc.2017.05.035
- Ning, F.-L., Tao, J., Li, D.-D., Tian, L.-L., Wang, M.-L., Reilly, S., Liu, C., Cai, H., Xin, H. and Zhang, X.-M. (2022) Activating BK channels ameliorates vascular smooth muscle calcification through Akt signaling. Acta Pharmacol. Sin. 43, 624-633. https://doi.org/10.1038/s41401-021-00704-6
- Okamoto, T., Taguchi, M., Osaki, T., Fukumoto, S. and Fujita, T. (2014) Phosphate enhances reactive oxygen species production and suppresses osteoblastic differentiation. J. Bone Miner. Metab. 32, 393-399. https://doi.org/10.1007/s00774-013-0516-z
- Park, J. S., Lee, Y. S., Lee, D. H. and Bae, S. H. (2019) Repositioning of niclosamide ethanolamine (NEN), an anthelmintic drug, for the treatment of lipotoxicity. Free Radic. Biol. Med. 137, 143-157. https://doi.org/10.1016/j.freeradbiomed.2019.04.030
- Pasquale, G., Coutsoumbas, G., Zagnoni, S., Filippini, E. and Resciniti, E. (2019) Aortic stenosis in the elderly can be prevented: Old risk factors and a new pathological condition. Eur. Heart J. Suppl. 21, B52-B53. https://doi.org/10.1093/eurheartj/suz017
- Pawade, T. A., Newby, D. E. and Dweck, M. R. (2015) Calcification in aortic stenosis: the skeleton key. J. Am. Coll. Cardiol. 66, 561-577. https://doi.org/10.1016/j.jacc.2015.05.066
- Qiao, Y. (2022) Reactive oxygen species in cardiovascular calcification: role of medicinal plants. Front. Pharmacol. 13, 858160.
- Rajamannan, N. M., Evans, F. J., Aikawa, E., Grande-Allen, K. J., Demer, L. L., Heistad, D. D., Simmons, C. A., Masters, K. S., Mathieu, P., O'brien, K. D., Schoen, F. J., Towler, D. A., Yoganathan, A. P. and Otto, C. M. (2011) Calcific aortic valve disease: not simply a degenerative process. Circulation 124, 1783-1791. https://doi.org/10.1161/CIRCULATIONAHA.110.006767
- Richards, J., El-Hamamsy, I., Chen, S., Sarang, Z., Sarathchandra, P., Yacoub, M. H., Chester, A. H. and Butcher, J. T. (2013) Side-specific endothelial-dependent regulation of aortic valve calcification: interplay of hemodynamics and nitric oxide signaling. Am. J. Pathol. 182, 1922-1931. https://doi.org/10.1016/j.ajpath.2013.01.037
- Richer, S. C. and Ford, W. C. L. (2001) A critical investigation of NADPH oxidase activity in human spermatozoa. Mol. Hum. Reprod. 7, 237-244. https://doi.org/10.1093/molehr/7.3.237
- Rong, S., Zhao, X., Jin, X., Zhang, Z., Chen, L., Zhu, Y. and Yuan, W. (2014) Vascular calcification in chronic kidney disease is induced by bone morphogenetic protein-2 via a mechanism involving the Wnt/β-catenin pathway. Cell. Physiol. Biochem. 34, 2049-2060. https://doi.org/10.1159/000366400
- Rutkovskiy, A., Malashicheva, A., Sullivan, G., Bogdanova, M., Kostareva, A., Stenslokken, K. O., Fiane, A. and Vaage, J. (2017) Valve interstitial cells: the key to understanding the pathophysiology of heart valve calcification. J. Am. Heart Assoc. 6, e006339.
- Sanchez-Esteban, S., Castro-Pinto, M., Cook-Calvete, A., Reventun, P., Delgado-Marin, M., Benito-Manzanaro, L., Hernandez, I., Lopez-Menendez, J., Zamorano, J. L., Zaragoza, C. and Saura, M. (2022) Integrin-linked kinase expression in human valve endothelial cells plays a protective role in calcific aortic valve disease. Antioxidants 11, 1736.
- Serrano, A., Apolloni, S., Rossi, S., Lattante, S., Sabatelli, M., Peric, M., Andjus, P., Michetti, F., Carri, M. T., Cozzolino, M. and D'ambrosi, N. (2019) The S100A4 transcriptional inhibitor niclosamide reduces pro-inflammatory and migratory phenotypes of microglia: implications for amyotrophic lateral sclerosis. Cells 8, 1261.
- Shiwakoti, S., Adhikari, D., Lee, J. P., Kang, K. W., Lee, I. S., Kim, H. J. and Oak, M. H. (2020) Prevention of fine dust-induced vascular senescence by humulus lupulus extract and its major bioactive compounds. Antioxidants (Basel) 9, 1243.
- Shiwakoti, S., Ko, J.-Y., Gong, D., Dhakal, B., Lee, J.-H., Adhikari, R., Gwak, Y., Park, S.-H., Jun Choi, I., Schini-Kerth, V. B., Kang, K.-W. and Oak, M.-H. (2022) Effects of polystyrene nanoplastics on endothelium senescence and its underlying mechanism. Environ. Int. 164, 107248.
- Sugamura, K. and Keaney, J. F., Jr. (2011) Reactive oxygen species in cardiovascular disease. Free Radic. Biol. Med. 51, 978-992. https://doi.org/10.1016/j.freeradbiomed.2011.05.004
- Sui, H., Pan, S.-F., Feng, Y., Jin, B.-H., Liu, X., Zhou, L.-H., Hou, F.-G., Wang, W.-H., Fu, X.-L., Han, Z.-F., Ren, J.-L., Shi, X.-L., Zhu, H.-R. and Li, Q. (2014) Zuo Jin Wan reverses P-gp-mediated drug-resistance by inhibiting activation of the PI3K/Akt/NF-κB pathway. BMC Complement. Altern. Med. 14, 279.
- Sun, J., Ming, L., Shang, F., Shen, L., Chen, J. and Jin, Y. (2015) Apocynin suppression of NADPH oxidase reverses the aging process in mesenchymal stem cells to promote osteogenesis and increase bone mass. Sci. Rep. 5, 18572.
- Tanaka, T., Asano, T., Okui, T., Kuraoka, S., Singh, S. A., Aikawa, M. and Aikawa, E. (2022) Computational screening strategy for drug repurposing identified niclosamide as inhibitor of vascular calcification. Front. Cardiovasc. Med. 8, 826529.
- Vasquez-Vivar, J., Kalyanaraman, B., Martasek, P., Hogg, N., Masters, B. S., Karoui, H., Tordo, P. and Pritchard, K. A. Jr. (1998) Superoxide generation by endothelial nitric oxide synthase: the influence of cofactors. Proc. Natl. Acad. Sci. U. S. A. 95, 9220-9225. https://doi.org/10.1073/pnas.95.16.9220
- Vossen, L. M., Kroon, A. A., Schurgers, L. J. and De Leeuw, P. W. (2020) Pharmacological and nutritional modulation of vascular calcification. Nutrients 12, 100.
- Winter, J. N., Jefferson, L. S. and Kimball, S. R. (2011) ERK and Akt signaling pathways function through parallel mechanisms to promote mTORC1 signaling. Am. J. Physiol. Cell Physiol. 300, C1172-C1180. https://doi.org/10.1152/ajpcell.00504.2010
- Yang, X., Meng, X., Su, X., Mauchley, D. C., Ao, L., Cleveland, J. C. and Fullerton, D. A. (2009) Bone morphogenic protein 2 induces Runx2 and osteopontin expression in human aortic valve interstitial cells: role of Smad1 and extracellular signal-regulated kinase 1/2. J. Thorac. Cardiovasc. Surg. 138, 1008-1015.e1001. https://doi.org/10.1016/j.jtcvs.2009.06.024
- Yutzey, K. E., Demer, L. L., Body, S. C., Huggins, G. S., Towler, D. A., Giachelli, C. M., Hofmann-Bowman, M. A., Mortlock, D. P., Rogers, M. B., Sadeghi, M. M. and Aikawa, E. (2014) Calcific aortic valve disease: a consensus summary from the Alliance of Investigators on Calcific Aortic Valve Disease. Arterioscler. Thromb. Vasc. Biol. 34, 2387-2393. https://doi.org/10.1161/ATVBAHA.114.302523
- Zhang, M., Perino, A., Ghigo, A., Hirsch, E. and Shah, A. M. (2013) NADPH oxidases in heart failure: poachers or gamekeepers? Antioxid. Redox Signal. 18, 1024-1041. https://doi.org/10.1089/ars.2012.4550
- Zheng, H., Jia, L., Liu, C.-C., Rong, Z., Zhong, L., Yang, L., Chen, X.-F., Fryer, J. D., Wang, X., Zhang, Y.-W., Xu, H. and Bu, G. (2017) TREM2 promotes microglial survival by activating Wnt/β-catenin pathway. J. Neurosci. 37, 1772-1784. https://doi.org/10.1523/JNEUROSCI.2459-16.2017