DOI QR코드

DOI QR Code

Searching for Novel Candidate Small Molecules for Ameliorating Idiopathic Pulmonary Fibrosis: a Narrative Review

  • Kyung-il Kim (Department of Pharmacology, School of Medicine, Chungnam National University) ;
  • Rajib Hossain (Department of Pharmacology, School of Medicine, Chungnam National University) ;
  • Xin Li (Department of Pharmacology, School of Medicine, Chungnam National University) ;
  • Hyun Jae Lee (Smith Liberal Arts College and Department of Addiction Science,Graduate School, Sahmyook University) ;
  • Choong Jae Lee (Department of Pharmacology, School of Medicine, Chungnam National University)
  • Received : 2023.03.14
  • Accepted : 2023.05.10
  • Published : 2023.09.01

Abstract

Idiopathic pulmonary fibrosis (IPF) can be defined as a progressive chronic pulmonary disease showing scarring in the lung parenchyma, thereby resulting in increase in mortality and decrease in the quality of life. The pathophysiologic mechanism of fibrosis in IPF is still unclear. Repetitive microinjuries to alveolar epithelium with genetical predisposition and an abnormal restorative reaction accompanied by excessive deposition of collagens are involved in the pathogenesis. Although the two FDA-approved drugs, pirfenidone and nintedanib, are under use for retarding the decline in lung function of patients suffered from IPF, they are not able to improve the survival rate or quality of life. Therefore, a novel therapeutic agent acting on the major steps of the pathogenesis of disease and/or, at least, managing the clinical symptoms of IPF should be developed for the effective regulation of this incurable disease. In the present review, we tried to find a potential of managing the clinical symptoms of IPF by natural products derived from medicinal plants used for controlling the pulmonary inflammatory diseases in traditional Asian medicine. A multitude of natural products have been reported to exert an antifibrotic effect in vitro and in vivo through acting on the epithelial-mesenchymal transition pathway, transforming growth factor (TGF)- β-induced intracellular signaling, and the deposition of extracellular matrix. However, clinical antifibrotic efficacy of these natural products on IPF have not been elucidated yet. Thus, those effects should be proven by further examinations including the randomized clinical trials, in order to develop the ideal and optimal candidate for the therapeutics of IPF.

Keywords

Acknowledgement

This research was supported by the NRF-2014R1A6A 1029617, Basic Science Research Program through the National Research Foundation of Korea (NRF) funded by the Ministry of Education.

References

  1. Bai, L., Li, A., Gong, C., Ning, X. and Wang, Z. (2020) Protective effect of rutin against bleomycin induced lung fibrosis: involvement of TGF-β1/α-SMA/Col I and III pathway. BioFactors 46, 637-644. https://doi.org/10.1002/biof.1629
  2. Boyapally, R., Pulivendala, G., Bale, S. and Godugu, C. (2019) Niclosamide alleviates pulmonary fibrosis in vitro and in vivo by attenuation of epithelial-to-mesenchymal transition, matrix proteins &Wnt/β-catenin signaling: a drug repurposing study. Life Sci. 220, 8-20. https://doi.org/10.1016/j.lfs.2018.12.061
  3. Canestaro, W. J., Forrester, S. H., Raghu, G., Ho, L. and Devine, B. E. (2016) Drug treatment of idiopathic pulmonary fibrosis: systematic review and network meta-analysis. Chest 149, 756-766. https://doi.org/10.1016/j.chest.2015.11.013
  4. Chen, C., Wang, Y. Y., Wang, Y. X., Cheng, M. Q., Yin, J. B., Zhang, X. and Hong, Z. P. (2018) Gentiopicroside ameliorates bleomycin-induced pulmonary fibrosis in mice via inhibiting inflammatory and fibrotic process. Biochem. Biophys. Res. Commun. 495, 2396-2403. https://doi.org/10.1016/j.bbrc.2017.12.112
  5. Chen, L. and Zhao, W. (2016) Apigenin protects against bleomycin-induced lung fibrosis in rats. Exp. Ther. Med. 11, 230-234. https://doi.org/10.3892/etm.2015.2885
  6. Chun-Bin, S., Yi, Y., Qin-Yi, W., Yang, L., Jing-Ze, Y., Hai-Jing, X., SiQi, Z., Jiong, H., Jing, W., Fei-Yu, L., Jin-Yuan, Y., Jia-Li, Y. and Zhong-Shan, Y. (2020) The main active components of Curcuma zedoaria reduces collagen deposition in human lung fibroblast via autophagy. Mol. Immunol. 124, 109-116. https://doi.org/10.1016/j.molimm.2020.05.017
  7. Cui, Y., Jiang, L., Yu, R., Shao, Y., Mei, L. and Tao, Y. (2019) β-carboline alkaloids attenuate bleomycin induced pulmonary fibrosis in mice through inhibiting NF-kb/p65 phosphorylation and epithelial-mesenchymal transition. J. Ethnopharmacol. 243, 112096.
  8. Divya, T., Velavan, B. and Sudhandiran, G. (2018) Regulation of transforming growth factor-β/Smad-mediated epithelial-mesenchymal transition by celastrol provides protection against bleomycin-induced pulmonary fibrosis. Basic Clin. Pharmacol. Toxicol. 123, 122-129. https://doi.org/10.1111/bcpt.12975
  9. Dong, S. H., Liu, Y. W., Wei, F., Tan, H. Z. and Han, Z. D. (2017) Asiatic acid ameliorates pulmonary fibrosis induced by bleomycin (BLM) via suppressing pro-fibrotic and inflammatory signaling pathways. Biomed. Pharmacother. 89, 1297-1309. https://doi.org/10.1016/j.biopha.2017.03.005
  10. Fu, Y., Zhao, P., Xie, Z., Wang, L. and Chen, S. (2018) Oridonin inhibits myofibroblast differentiation and bleomycin-induced pulmonary fibrosis by regulating transforming growth factor β (TGFβ)/Smad pathway. Med. Sci. Monit. 24, 7548-7555. https://doi.org/10.12659/MSM.912740
  11. Garcia-Sancho, C., Buendia-Roldan. I., Fernandez-Plata, M. R., Navarro, C., Perez-Padilla, R., Vargas, M. H., Loyd, J. E. and Selman, M. (2011) Familial pulmonary fibrosis is the strongest risk factor for idiopathic pulmonary fibrosis. Respir. Med. 105, 1902-1907. https://doi.org/10.1016/j.rmed.2011.08.022
  12. Gan, C., Zhang, Q., Liu, H., Wang, G., Wang, L., Li, Y., Tan, Z., Yin, W., Yao, Y., Xie, Y., Ouyang, L., Yu, L. and Ye, T. (2022) Nifuroxazide ameliorates pulmonary fibrosis by blocking myofibroblast genesis: a drug repurposing study. Respir Res. 23, 32.
  13. Guan, C., Qiao, S., Lv, Q., Cao, N., Wang, K., Dai, Y. and Wei, Z. (2018) Orally administered berberine ameliorates bleomycin-induced pulmonary fibrosis in mice through promoting activation of PPAR-gamma and subsequent expression of HGF in colons. Toxicol. Appl. Pharmacol. 343, 1-15. https://doi.org/10.1016/j.taap.2018.02.001
  14. Gungor, H., Ekici, M., Onder Karayigit, M., Turgut, N. H., Kara, H. and Arslanbas, E. (2020) Zingerone ameliorates oxidative stress and inflammation in bleomycin-induced pulmonary fibrosis: modulation of the expression of TGF-β1 and iNOS. Naunyn-Schmiedeberg's Arch. Pharmacol. 393, 1659-1670. https://doi.org/10.1007/s00210-020-01881-7
  15. Harari, S. and Caminati, A. (2010) IPF: new insight on pathogenesis and treatment. Allergy 65, 537-553. https://doi.org/10.1111/j.1398-9995.2009.02305.x
  16. Iyer, S. N., Gurujeyalakshmi, G. and Giri, S. N. (1999) Effects of pirfenidone on transforming growth factor-β gene expression at the transcriptional level in bleomycin hamster model of lung fibrosis. J. Pharmacol. Exp. Ther. 291, 367-373.
  17. Jiang, F., Li, M., Wang, H., Ding, B., Zhang, C., Ding, Z., Yu, X. and Lv, G. (2019) Coelonin, an anti-inflammation active component of Bletilla striata and its potential mechanism. Int. J. Mol. Sci. 20, 4422.
  18. Karkale, S., Khurana, A., Saifi, M. A., Godugu, C. and Talla, V. (2018) Andrographolide ameliorates silica induced pulmonary fibrosis. Int. Immunopharmacol. 62, 191-202. https://doi.org/10.1016/j.intimp.2018.07.012
  19. King, T. E., Jr., Bradford, W. Z., Castro-Bernardini, S., Fagan, E. A., Glaspole, I., Glassberg, M. K., Gorina, E., Hopkins, P. M., Kardatzke, D., Lancaster, L., Lederer, D. J., Nathan, S. D., Pereira, C. A., Sahn, S. A., Sussman, R., Swigris, J. J. and Noble, P. W. (2014) A phase 3 trial of pirfenidone in patients with idiopathic pulmonary fibrosis. N. Engl. J. Med. 370, 2083-2092. https://doi.org/10.1056/NEJMoa1402582
  20. Kreuter, M., Bonella, M., Wijsenbeek, M., Maher, T. M. and Spagnolo, P. (2015) Pharmacological treatment of idiopathic pulmonary fibrosis: current approaches, unsolved issues, and future perspectives. BioMed Res. Int. 2015, 329481.
  21. Kropski, J. A., Mitchell, D. B., Markin, C., Polosukhin, V. V., Choi, L., Johnson, J. E., Lawson, W. E., Phillips, J. A., 3rd, Cogan, J. D., Blackwell, T. S. and Loyd, J. E. (2014) A novel dyskerin (DKC1) mutation is associated with familial interstitial pneumonia. Chest 146, e1-e7. https://doi.org/10.1378/chest.13-2224
  22. Kyung, S. Y., Kim, D. Y., Yoon, J. Y., Son, E. S., Kim, Y. J., Park, J. W. and Jeong, S. H. (2018) Sulforaphane attenuates pulmonary fibrosis by inhibiting the epithelial-mesenchymal transition. BMC Pharmacol.Toxicol. 19, 13.
  23. Li, C., Lu, Y., Du, S., Li, S., Zhang, Y., Liu, F., Chen, Y., Weng, D. and Chen, J. (2017a) Dioscin exerts protective effects against crystalline silica-induced pulmonary fibrosis in mice. Theranostics 7, 4255-4275. https://doi.org/10.7150/thno.20270
  24. Li, C., Yu, Y., Li, W., Liu, B., Jiao, X., Song, X., Lv, C. and Qin, S. (2017b) Phycocyanin attenuates pulmonary fibrosis via the TLR2-MyD88-NFkappaB signaling pathway. Sci. Rep. 7, 5843.
  25. Li, R. S., Xu, G. H., Cao, J., Liu, B., Xie, H. F., Ishii, Y. and Zhang, C. F. (2019) α-Mangostin ameliorates bleomycin-induced pulmonary fibrosis in mice partly through activating adenosine 5'-monophosphate-activated protein kinase. Front. Pharmacol. 10, 1305.
  26. Li, X., Lu, C., Liu, S., Shuaishuai, L., Su, C., Xiao, T., Bi, Z., Sheng, P., Huang, M., Liu, X., Wei, Y., Zhao, L., Miao, S., Mao, J., Huang, K., Gao, S., Liu, N., Qi, M., Liu, T., Qin, S., Wei, L., Sun, T., Ning, W., Yang, G., Zhou, H. and Yang, C. (2018a) Synthesis and discovery of a drug candidate for treatment of idiopathic pulmonary fibrosis through inhibition of TGF-β1 pathway. Eur. J. Med. Chem. 157, 229-247. https://doi.org/10.1016/j.ejmech.2018.07.074
  27. Li, X., Yu, H., Liang, L., Bi, Z., Wang, Y., Gao, S., Wang, M., Li, H., Miao, Y., Deng, R., Ma, L., Luan, J., Li, S., Liu, M., Lin, J., Zhou, H. and Yang, C. (2020) Myricetin ameliorates bleomycin-induced pulmonary fibrosis in mice by inhibiting TGF-β signaling via targeting HSP90β. Biochem. Pharmacol. 178, 114097.
  28. Li, X. H., Xiao, T., Yang, J. H., Qin, Y., Gao, J. J., Liu, H. J. and Zhou, H. G. (2018b) Parthenolide attenuated bleomycin-induced pulmonary fibrosis via the NF-kappaB/Snail signaling pathway. Respir. Res. 19, 111.
  29. Liu, M., Xu, H., Zhang, L., Zhang, C., Yang, L., Ma, E., Liu, L. and Li, Y. (2018) Salvianolic acid B inhibits myofibroblast transdifferentiation in experimental pulmonary fibrosis via the up-regulation of Nrf2. Biochem. Biophys. Res. Commun. 495, 325-331. https://doi.org/10.1016/j.bbrc.2017.11.014
  30. Loomis-King, H., Flaherty, K. R. and Moore, B. B. (2013) Pathogenesis, current treatments and future directions for idiopathic pulmonary fibrosis. Curr. Opin. Pharmacol. 13, 377-385. https://doi.org/10.1016/j.coph.2013.03.015
  31. Ma, H., Wu, X., Li, Y. and Xia, Y. (2022) Research progress in the molecular mechanisms, therapeutic targets, and drug development of idiopathic pulmonary fibrosis. Front. Pharmacol. 13, 963054.
  32. Maher, T. M., Wells, A. U. and Laurent, G. J. (2007) Idiopathic pulmonary fibrosis: multiple causes and multiple mechanisms? Eur. Respir. J. 30, 835-839. https://doi.org/10.1183/09031936.00069307
  33. Mathai, S. K., Schwartz, D. A. and Warg, L. A. (2014) Genetic susceptibility and pulmonary fibrosis. Curr. Opin. Pulm. Med. 20, 429-435. https://doi.org/10.1097/MCP.0000000000000074
  34. Meltzer, E. B. and Noble, P. W. (2008) Idiopathic pulmonary fibrosis. Orphanet J. Rare Dis. 3, 8.
  35. Miao, Y., Geng, Y., Yang, L., Zheng, Y., Dai, Y. and Wei, Z. (2022) Morin inhibits the transformation of fibroblasts towards myofibroblasts through regulating "PPAR-γ-glutaminolysis-DEPTOR" pathway in pulmonary fibrosis. J. Nutr. Biochem. 101, 108923.
  36. Miao, K., Pan, T., Mou, Y., Zhang, L., Xiong, W., Xu, Y., Yu, J. and Wang, Y. (2020) Scutellarein inhibits BLM-mediated pulmonary fibrosis by affecting fibroblast differentiation, proliferation, and apoptosis. Ther. Adv. Chronic Dis. 11, 2040622320940185.
  37. Nathan, S. D., Albera, C., Bradford, W. Z., Costabel, U., Glaspole, I., Glassberg, M. K., Kardatzke, D., Daigl, M., Kirchgaessler, K.-U., Lancaster, L., Leserer, D. J., Pereira, C. A., Swigris, J. J., Valeyre, D. and Noble, P. W. (2017) Effect of pirfenidone on mortality: pooled analyses and meta-analyses of clinical trials in idiopathic pulmonary fibrosis. Lancet Respir. Med. 5, 33-41. https://doi.org/10.1016/S2213-2600(16)30326-5
  38. Noble, P. W., Albera, C., Bradford, W. Z., Costabel, U., Glassberg, M. K., Kardatzke, D., King, T. E., Jr., Lancaster, L., Sahn, S. A., Szwarcberg, J., Valeyre, D. and du Bois R. M. (2011) Pirfenidone in patients with idiopathic pulmonary fibrosis (CAPACITY): two randomised trials. Lancet 377, 1760-1769. https://doi.org/10.1016/S0140-6736(11)60405-4
  39. Olson, A. L. and Swigris, J. J. (2012) Idiopathic pulmonary fibrosis: diagnosis and epidemiology. Clin. Chest Med. 33, 41-50. https://doi.org/10.1016/j.ccm.2011.12.001
  40. P, K. M., Sivashanmugam, K., Kandasamy, M., Subbiah, R. and Ravikumar V. (2021) Repurposing of histone deacetylase inhibitors: a promising strategy to combat pulmonary fibrosis promoted by TGF-β signalling in COVID-19 survivors. Life Sci. 266, 118883.
  41. Pardo, A. and Selman, M. (2002) Idiopathic pulmonary fibrosis: new insights in its pathogenesis. Int. J. Biochem. Cell Biol. 34, 1534-1538. https://doi.org/10.1016/S1357-2725(02)00091-2
  42. Prashanth Goud, M., Bale, S., Pulivendala, G. and Godugu, C. (2019) Therapeutic effects of Nimbolide, an autophagy regulator, in ameliorating pulmonary fibrosis through attenuation of TGF-β1 driven epithelial-to-mesenchymal transition. Int. Immunopharmacol. 75, 105755.
  43. Pulivendala, G., Bale, S. and Godugu, C. (2020) Honokiol: a polyphenol neolignan ameliorates pulmonary fibrosis by inhibiting TGF-β/Smad signaling, matrix proteins and IL-6/CD44/STAT3 axis both in vitro and in vivo. Toxicol. Appl. Pharmacol. 391, 114913.
  44. Qian, W., Cai, X., Qian, Q., Zhang, W. and Wang, D. (2018) Astragaloside IV modulates TGF-β1-dependent epithelial-mesenchymal transition in bleomycin-induced pulmonary fibrosis. J. Cell. Mol. Med. 22, 4354-4365. https://doi.org/10.1111/jcmm.13725
  45. Qu, Y., Zhang, G., Ji, Y., Zhua, H., Lv, C. and Jiang, W. (2016) Protective role of gambogic acid in experimental pulmonary fibrosis in vitro and in vivo. Phytomedicine 23, 350-358. https://doi.org/10.1016/j.phymed.2016.01.011
  46. Raghu, G., Collard, H. R., Egan, J. J., Martinez, F. J., Behr, J., Brown, K. K., Colby, T. V., Cordier, J.-F., Flaherty, K. R., Lasky, J. A., Lynch, D. A., Ryu, J. H., Swigris, J. J., Wells, A. U., Ancochea, J., Bouros, D., Carvalho, C., Costabel, U., Ebina, M., Hansell, D. M., Johkoh, T., Kim, D. S., King, T. E., Jr., Kondoh, Y., Myers, J., Muller, N. L., Nicholson, A. G., Richeldi, L., Selman, M., Dudden, R. F., Griss, B. S., Protzko, S. L. and Schunemann, H. J. (2011) An official ATS/ERS/JRS/ALAT statement: idiopathic pulmonary fibrosis: evidence-based guidelines for diagnosis and management. Am. J. of Respir. Crit. Care Med. 183, 788-824.
  47. Richeldi, L., Collard, H. R., and Jones, M. G. (2017) Idiopathic pulmonary fibrosis. Lancet 389, 1941-1952. https://doi.org/10.1016/S0140-6736(17)30866-8
  48. Richeldi, L., du Bois, R. M., Raghu, G., Azuma, A., Brown, K. K., Costabel, U., Cottin, V., Flaherty, K. R., Hansell, D. M., Inoue, Y., Kim, D. S., Kolb, M., Nicholson, A. G., Noble, P. W., Selman, M., Taniguchi, H., Brun, M., Le Maulf, F., Girard, M., Stowasser, S., SchlenkerHerceg, R., Disse, B. and Collard, H. R. (2014) Efficacy and safety of nintedanib in idiopathic pulmonary fibrosis. N. Engl. J. Med. 370, 2071-2082. https://doi.org/10.1056/NEJMoa1402584
  49. Selman, M., King, T. E. and Pardo, A. (2001) Idiopathic pulmonary fibrosis: prevailing and evolving hypotheses about its pathogenesis and implications for therapy. Ann. Intern. Med. 134, 136-151. https://doi.org/10.7326/0003-4819-134-2-200101160-00015
  50. Somogyi, V., Chaudhuri, N., Torrisi, S. E., Kahn, N., Muller, V. and Kreuter, M. (2019) The therapy of idiopathic pulmonary fibrosis: what is next? Eur. Respir. Rev. 28, 190021.
  51. Sun, S. C., Han, R., Hou, S. S., Yi, H. Q., Chi, S. J. and Zhang, A. H. (2020) Juglanin alleviates bleomycin-induced lung injury by suppressing inflammation and fibrosis via targeting sting signaling. Biomed. Pharmacother. 127, 110119.
  52. Taniguchi, H., Ebina, M., Kondoh, Y., Ogura, T., Azuma, A., Suga, M., Taguchi, Y., Takagashi, H., Nakata, K., Sato, A., Takeuchi, M., Raghu, G., Kudoh, S. and Nukiwa, T. (2010) Pirfenidone in idiopathic pulmonary fibrosis. Eur. Respir. J. 35, 21-29.
  53. Tao, L., Cao, J., Wei, W., Xie, H., Zhang, M. and Zhang, C. (2017) Protective role of rhapontin in experimental pulmonary fibrosis in vitro and in vivo. Int. Immunopharmacol. 47, 38-46. https://doi.org/10.1016/j.intimp.2017.03.020
  54. Tian, S. L., Yang, Y., Liu, X. L. and Xu, Q. B. (2018) Emodin attenuates bleomycin-induced pulmonary fibrosis via anti-inflammatory and anti-oxidative activities in rats. Med. Sci. Monit. 24, 1-10. https://doi.org/10.12659/MSM.905496
  55. Travis, W. D., Costabel, U., Hansell, D. M., King, T. E., Lynch, D. A, Nicholson, A. G., Ryerson, C. J., Ryu, J. H., Selman, M., Wells, A. U., Behr, J., Bouros, D., Brown, K. K., Colby, T. V., Collard, H. R., Cordeiro, C. R., Cottin, V., Crestani, B., Drent, M., Dudden, R. F., Egan, J., Flaherty, K., Hogaboam, C., Inoue, Y., Johkoh, T., Kim, D. S., Kitaichi, M., Loyd, J., Martinez, F. J., Myers, J., Protzko, S., Raghu, G., Richeldi, L., Sverzellati, N., Swigris, J. and Valeyre, D. (2013) An official American Thoracic Society/European Respiratory Society statement: update of the international multidisciplinary classification of the idiopathic interstitial pneumonias. Am. J. Respir. Crit. Care Med. 188, 733-748.
  56. Tzouvelekis, A., Tzilas, V., Dassiou, M. and Bouros, D. (2018) Metformin in idiopathic pulmonary fibrosis "seeking the holy-grail through drug-repositioning". Respiration 96, 305-307. https://doi.org/10.1159/000490917
  57. Wang, L., Liu, H., He, Q., Gan, C., Li, Y., Zhang, Q., Yao, Y., He, F., Ye, T. and Yin, W. (2020a) Galangin ameliorated pulmonary fibrosis in vivo and in vitro by regulating epithelial-mesenchymal transition. Bioorg. Med. Chem. 28, 115663.
  58. Wang, Y., Dong, X., Zhao, N., Su, X., Wang, Y., Li, Y., Wen, M., Li, Z., Wang, C., Chen, J. and Zuang, W. (2020b) Schisandrin B attenuates bleomycin-induced pulmonary fibrosis in mice through the wingless/integrase-1 signaling pathway. Exp. Lung Res. 46, 185-194. https://doi.org/10.1080/01902148.2020.1760964
  59. Williams, K. J. (2014) Gammaherpesviruses and pulmonary fibrosis: evidence from humans, horses, and rodents. Vet. Pathol. 51, 372-384. https://doi.org/10.1177/0300985814521838
  60. Wollin, L., Wex, E., Pautsch, A., Schnapp, G., Hostettler, K. E., Stowasser, S. and Kolb, M. (2015) Mode of action of nintedanib in the treatment of idiopathic pulmonary fibrosis. Eur. Respir. J. 45, 1434-1445. https://doi.org/10.1183/09031936.00174914
  61. Xia, Y., Xia, Y. F., Lv, Q., Yue, M. F., Qiao, S. M., Yang, Y., Wei, Z. F. and Dai, Y. (2016) Madecassoside ameliorates bleomycin-induced pulmonary fibrosis in mice through promoting the generation of hepatocyte growth factor via PPAR-gamma in colon. Br. J. Pharmacol. 173, 1219-1235. https://doi.org/10.1111/bph.13421
  62. Yang, F., Cao, Y., Zhang, J., You, T. and Zhu, L. (2017) Glaucocalyxin A improves survival in bleomycin-induced pulmonary fibrosis in mice. Biochem. Biophys. Res. Commun. 482, 147-153. https://doi.org/10.1016/j.bbrc.2016.11.003
  63. Yang, H., Hua, C., Yang, X., Fan, X., Song, H., Peng, L. and Ci, X. (2020) Pterostilbene prevents LPS-induced early pulmonary fibrosis by suppressing oxidative stress, inflammation and apoptosis in vivo. Food Funct. 11, 4471-4484. https://doi.org/10.1039/C9FO02521A
  64. Yang, J. Y., Tao, L. J., Liu, B., You, X. Y., Zhang, C. F., Xie, H. F. and Li, R. S. (2019) Wedelolactone attenuates pulmonary fibrosis partly through activating AMPK and regulating Raf-MAPKs signaling pathway. Front. Pharmacol. 10, 151.