DOI QR코드

DOI QR Code

Re-Examination of Several Elsinoë Species Reported from Japan

  • Anysia Hedy Ujat (Graduate School of Bioresources, Mie University) ;
  • Tsuyoshi Ono (Tokyo Metropolitan Agriculture and Forestry Research Center) ;
  • Yukako Hattori (Department of Mushroom Science and Forest Microbiology, Forestry and Forest Product Research Institute) ;
  • Chiharu Nakashima (Graduate School of Bioresources, Mie University)
  • Received : 2023.04.11
  • Accepted : 2023.05.21
  • Published : 2023.06.30

Abstract

Elsinoë are plant pathogenic fungi that cause scabs, spotted anthracnose, and some morphological distortions on various plants, including woody plants, economically important crops, and ornamental plants. Taxonomical reexamination of Elsinoë species in Japan has not yet been conducted based on the modern species criteria. In this study, several Japanese isolates were reexamine based on the morphological and molecular-phylogenetic analysis of the internal transcribed spacer region (ITS), large subunit gene (LSU)m and protein-coding gene such as RNA polymerase II subunit (rpb2) and Translation elongation factor 1-alpha (tef). Japanese isolates were divided into four clades and three new species, Elsinoë hydrangeae, E. sumire, and E. tanashiensis were proposed. One species, Sphaceloma akebiae, was transferred to the genus Elsinoë.

Keywords

Acknowledgement

All the authors are grateful to the curator of the herbaria TNS and TFM for the possibility to examine the specimens in their keeping.

References

  1. Fan XL, Barreto RW, Groenewald JZ, et al. Phylogeny and taxonomy of the scab and spot anthracnose fungus Elsinoe (Myriangiales, Dothideomycetes). Stud Mycol. 2017;87:1-41. https://doi.org/10.1016/j.simyco.2017.02.001
  2. Marin-Felix Y, Hernandez-Restrepo M, Iturrieta-Gonzalez I, et al. Genera of phytopathogenic fungi: GOPHY 3. Stud Mycol. 2019;94:1-124. https://doi.org/10.1016/j.simyco.2019.05.001
  3. Raciborski M. Parasitische Algen und Pilze Java's I [Parasitic algae and fungi of java I]. Botanischen Institut zu Buitenzorg, Batavia: Staatsdruckerei, 1900.
  4. Turland NJ, Wiersema JH, Barrie FR, et al. International Code of Nomenclature for algae, fungi, and plants (Shenzhen code) adopted by the Nineteenth International Botanical Congress Shenzhen, China, July 2017. Glashutten: Koeltz Botanical Books, 2018.
  5. Crous PW, Rossman AY, Aime MC, et al. Names of phytopathogenic fungi: a practical guide. Phytopathology. 2021;111(9):1500-1508. https://doi.org/10.1094/PHYTO-11-20-0512-PER
  6. Rossman AY, Crous PW, Hyde KD, et al. Recommended names for pleomorphic genera in dothideomycetes. IMA Fungus. 2015;6(2):507-523. https://doi.org/10.5598/imafungus.2015.06.02.14
  7. Rossman AY, Cavan Allen W, Castlebury LA. New combinations of plant-associated fungi resulting from the change to one name for fungi. IMA Fungus. 2016;7(1):1-7. https://doi.org/10.5598/imafungus.2016.07.01.01
  8. Wijayawardene NN, Crous PW, Kirk PM, et al. Naming and outline of Dothideomycetes-2014 including proposals for the protection or suppression of generic names. Fungal Divers. 2014;69(1):1-55. https://doi.org/10.1007/s13225-014-0309-2
  9. Jenkins AE. A specific term for diseases caused by Elsinoe and Sphaceloma. Plant Dis Report. 1947;31:71.
  10. Goto K. Outbreak of shoot scab of sweet potato in amami islands, Kagoshima. Annal Phytopath Soc Jpn. 1937;7:143-147. https://doi.org/10.3186/jjphytopath.7.143
  11. Guatimosim E, Pinto HJ, Pereira OL, et al. Pathogenic mycobiota of the weeds Bidens pilosa and Bidens subalternans. Trop Plant Pathol. 2015;40(5):298-317. https://doi.org/10.1007/s40858-015-0040-x
  12. Rademacher W, Graebe JE. Gibberellin A4 produced by Sphaceloma manihoticola, the cause of the superelongation disease of cassava (Manihot esculenta). Biochem Biophys Res Commun. 1979;91(1):35-40. https://doi.org/10.1016/0006-291X(79)90579-5
  13. Swart L, Crous PW, Kang JC, et al. Differentiation of species of Elsinoe associated with scab disease of Proteaceae based on morphology, symptomatology, and ITS sequence phylogeny. Mycol. 2001;93(2):366-379. https://doi.org/10.1080/00275514.2001.12063168
  14. Jayawardena RS, Ariyawansa HA, Singtripop C, et al. A re-assessment of Elsinoaceae (Myriangiales, Dothideomycetes). Phytotaxa. 2014;176(1):120-138. https://doi.org/10.11646/phytotaxa.176.1.13
  15. Quaedvlieg W, Binder M, Groenewald JZ, et al. Introducing the consolidated species concept to resolve species in the Teratosphaeriaceae. Persoonia. 2014;33:1-40. https://doi.org/10.3767/003158514X681981
  16. Rayner RW, A mycological colour chart. UK: Commonwealth Mycological Institute; 1970.
  17. Hyun JW, Yi SH, Mackenzie SJ, et al. Pathotypes and genetic relationship of worldwide collections of Elsinoe spp. causing scab diseases of citrus. Phytopathology. 2009;99(6):721-728. https://doi.org/10.1094/PHYTO-99-6-0721
  18. Kumar S, Stecher G, Li M, et al. MEGA X: molecular evolutionary genetics analysis across computing platforms. Mol Biol Evol. 2018;35(6):1547-1549. https://doi.org/10.1093/molbev/msy096
  19. Katoh K, Rozewicki J, Yamada KD. MAFFT online service: multiple sequence alignment, interactive sequence choice and visualization. Brief Bioinform. 2019;20(4):1160-1166. https://doi.org/10.1093/bib/bbx108
  20. Larsson A. AliView: a fast and lightweight alignment viewer and editor for large datasets. Bioinformatics. 2014;30(22):3276-3278. https://doi.org/10.1093/bioinformatics/btu531
  21. Di. Darriba D, Posada A, Kozlov M, et al. ModelTest-NG: a new and scalable tool for the selection of DNA and protein evolutionary models. Mol Biol Evol. 2020;37(1):291-294. https://doi.org/10.1093/molbev/msz189
  22. Kozlov AM, Darriba D, Flouri T, et al. RAxML-NG: a fast, scalable and user-friendly tool for maximum likelihood phylogenetic inference. Bioinformatics. 2019;35(21):4453-4455. https://doi.org/10.1093/bioinformatics/btz305
  23. Felsenstein J. Confidence limits on phylogenies: an approach using the bootstrap. Evolution. 1985; 39(4):783-791. https://doi.org/10.2307/2408678
  24. Ronquist F, Teslenko M, van der Mark P, et al. Mrbayes 3.2: efficient bayesian phylogenetic inference and model choice across a large model space. Syst Biol. 2012;61(3):539-542. https://doi.org/10.1093/sysbio/sys029
  25. Kurosawa E, Katsuki S. Miscellaneous notes on Myriangiales from Japan III. Botan Mag Tokyo. 1957;70(827):131-136. https://doi.org/10.15281/jplantres1887.70.131
  26. Ono T, S Kagiwada H, Negishi H, et al. First report of scab disease caused by a Sphaceloma sp. on Hydrangea serrata [in Japanese]. Jpn J Phytopathol. 2010;76(41):1-2.
  27. Massey LM, Jenkins AE. Scab of violet caused by Sphaceloma. Memoirs of the Cornell Univ Agric Exp Station. 1935;176:1-9.
  28. Farr DF, Rossman AY. Fungal databases, U.S. National Fungus Collections, ARS, USDA [Online]. 2022. Available from: https://nt.ars-grin.gov/fungaldatabases.
  29. Chiba O, Kobayashi T. Some observations on the disease of poplar seedlings. J Jpn Forest Soc. 1957;39(2):74-78.
  30. Jenkins AE. Elsino€e on apple and pear. J Agric Res. 1932;44(9):689-700.
  31. Jenkins AE, Bitancourt AA. An Elsinoe causing an anthracnose on hicoria pecan. Phytopathology. 1938;28(1):75-80.
  32. Jenkins AE, Bitancourt AA. Studies in the Myriangiales XVI. Phyllosticta caryae rand non pk. as Sphaceloma, including its separation from Peck's species. Arch Inst Biol Sao Paulo. 1965;32:61-76.
  33. Kurosawa E, Katsuki S. Miscellaneous notes on Myriangiales from Japan II. Botan Mag Tokyo. 1956;69(817-818):315-318. https://doi.org/10.15281/jplantres1887.69.315
  34. Kurata H. Taxonomical study on pathogens causing soybean scab. Ann Rept Plant Prot. 1957;4:13-14.
  35. Hara K. Experimental manual of tree diseases (jikken-jumoku-byogai-hen). Tokyo, Japan: Yokendo; 1927.
  36. Tsujii R. Disease transmitting by seedlings. Miscellaneous Rep Plant Quarantine Office. 1926;1:101-104.
  37. Kurosawa E, Katsuki S. Miscellaneous notes on Myriangiales from Japan (1). Jpn J Phytopathol. 1956;21(1):13-16. https://doi.org/10.3186/jjphytopath.21.13
  38. Jenkins AE, Bitancourt AA. Diagnosis of the Elsinoe on flowering dogwood. J Washington Acad Sci. 1948;38(11):362-265.