DOI QR코드

DOI QR Code

Taxonomy of Botryotrichum luteum sp. nov. based on Morphology and Phylogeny Isolated from Soil in Korea

  • Jung-Joo Ryu (College of Agriculture and Life Sciences, Kyungpook National University) ;
  • Kallol Das (College of Agriculture and Life Sciences, Kyungpook National University) ;
  • Seong-Keun Lim (College of Agriculture and Life Sciences, Kyungpook National University) ;
  • Soo-Min Hong (College of Agriculture and Life Sciences, Kyungpook National University) ;
  • Seung-Yeol Lee (College of Agriculture and Life Sciences, Kyungpook National University) ;
  • Hee-Young Jung (College of Agriculture and Life Sciences, Kyungpook National University)
  • Received : 2023.01.30
  • Accepted : 2023.02.22
  • Published : 2023.04.30

Abstract

In this study, a fungal strain KNUF-22-025 belonging to the genus Botryotrichum was isolated from the soil in Korea. The cultural and morphological characteristics of this strain differed from those of closely related species. On malt extract agar, strain KNUF-22-025 showed slower growth than most of the related species, except B. domesticum. The conidia size (9.6-21.1×9.9-18.4 ㎛) of strain KNUF-22-025 was larger than those of B. piluliferum, B. domesticum, and B. peruvianum but smaller than those of B. atrogriseum and B. iranicum. Conidiophores in strain KNUF-22-025 (137 ㎛) were longer than those in other closely related species but shorter than those in B. atrogriseum. Multi-locus analysis of molecular markers, such as ITS, 28S ribosomal DNA, RBP2, and TUB2 revealed that strain KNUF-22-025 was distinct from other Botryotrichum species. Thus, this strain is proposed as a novel species based on morphological characteristics along with molecular phylogeny and named Botryotrichum luteum sp. nov.

Keywords

Acknowledgement

This work was supported by a grant from the National Institute of Biological Resources, funded by the Ministry of Environment of the Republic of Korea (NIBR202203112).

References

  1. Kirk PM, Cannon PF, Minter DW, et al. Ainsworth and bisby's dictionary of the fungi. 10th ed. Wallingford: CABI International; 2008. P. 644.
  2. Banki O, Roskov Y, Doring, et al. Catalogue of life checklist. Catalogue of life; 2022.
  3. Maharachchikumbura SSN, Hyde KD, Jones EBG, et al. Towards a natural classification and backbone tree for Sordariomycetes. Fungal Divers. 2015;72:199-301. https://doi.org/10.1007/s13225-015-0331-z
  4. Cannon PF, Kirk PM. Fungal families of the world. Wallingford: CABI Bioscience; 2007.
  5. Winter G. New North American fungi. J Mycol. 1885;1:101-102. https://doi.org/10.2307/3752498
  6. Lumbsch HT, Huhndorf SM. Myconet volume 14. Part one. Outline of Ascomycota-2009. Part two. Notes on Ascomycete systematics. Nos. 4751-5113. Fieldiana Life Earth Sci. 2010;1:1-64. https://doi.org/10.3158/1557.1
  7. Maharachchikumbura SSN, Hyde KD, Jones EG, et al. Families of Sordariomycetes. Fungal Divers. 2016;79:1-317. https://doi.org/10.1007/s13225-016-0369-6
  8. Wang XW, Yang FY, Meijer M, et al. Redefining Humicola sensu stricto and related genera in the chaetomiaceae. Stud Mycol. 2019;93:65-153. https://doi.org/10.1016/j.simyco.2018.07.001
  9. Daniels J. Chaetomium piluliferum sp. nov., the perfect state of Botryotrichum piluliferum. Trans Br Mycol Soc. 1961;44:79-86. https://doi.org/10.1016/S0007-1536(61)80009-0
  10. Wang XW, Houbraken J, Groenewald JZ, et al. Diversity and taxonomy of Chaetomium and lavateum-like fungi from indoor environments. Stud Mycol. 2016;84:145-224.
  11. Crous PW, Carnegie AJ, Wingfield MJ, et al. Fungal planet description sheets: 868-950. Persoonia. 2019;42:291-473. https://doi.org/10.3767/persoonia.2019.42.11
  12. Schultes NP, Strzalkowski N, Li DW. Botryotrichum domesticum sp. nov., a new hyphomycete from an indoor environment. Botany. 2019;97:311-319. https://doi.org/10.1139/cjb-2018-0196
  13. Wang XW, Han PJ, Bai FY, et al. Taxonomy, phylogeny and identification of Chaetomiaceae with emphasis on thermophilic species. Stud Mycol. 2022;101:121-243. https://doi.org/10.3114/sim.2022.101.03
  14. Park SK, Ten LN, Lee SY, et al. New recorded species in three genera of the Sordariomycetes in Korea. Mycobiology. 2017;45:64-72. https://doi.org/10.5941/MYCO.2017.45.2.64
  15. Samson RA, Houbraken J, Thrane U, et al. Food and indoor fungi. 2nd ed. Westerdijk laboratory manual series 2. Utrecht, The Netherlands: Westerdijk Fungal Biodiversity Institute; 2019.
  16. White TJ, Bruns TD, Lee SB, et al. Amplification and direct sequencing of fungal ribosomal RNA genes for phylogenetics. PCR protocols: a guide to methods and applications. In: innis MA, Gelfand DH, Sninsky JJ, White TJ, editors. San Diego: Academic Press; 1990. p. 315-322.
  17. Gardes M, Bruns TD. ITS primers with enhanced specificity for basidiomycetes-application to the identification of mycorrhizae and rusts. Mol Ecol. 1993;2:113-118. https://doi.org/10.1111/j.1365-294X.1993.tb00005.x
  18. Miller AN, Huhndorf SM. Multi-gene phylogenies indicate ascomal wall morphology is a better predictor of phylogenetic relationships than ascospore morphology in the Sordariales (Ascomycota, Fungi). Mol Phylogenet Evol. 2005;35:60-75. https://doi.org/10.1016/j.ympev.2005.01.007
  19. O'Donnell K, Cigelnik E. Two divergent intragenomic Rdna ITS2 types within a monophyletic lineage of the fungus Fusarium are nonorthologous. Mol Phylogenet Evol. 1997;7(1):103-116. https://doi.org/10.1006/mpev.1996.0376
  20. Alidadi A, Vala SA, Jouzani GS. Botryotrichum iranicum sp. nov. and Trematosphaeria magenta sp. nov. as two new species from Iran. Mycol Progress. 2020;19(12):1575-1586.
  21. Kimura M. A simple method for estimating evolutionary rates of base substitutions through comparative studies of nucleotide sequences. J Mol Evol. 1980;16(2):111-120. https://doi.org/10.1007/BF01731581
  22. Saitou N, Nei M. The neighbor-joining method: a new method for reconstructing phylogenetic trees. Mol Biol Evol. 1987;4:406-425.
  23. Felsenstein J. Evolutionary trees from DNA sequences: a maximum likelihood approach. J Mol Evol. 1981;17(6):368-376. https://doi.org/10.1007/BF01734359
  24. Fitch WM. Toward defining the course of evolution: minimum change for a specific tree topology. Syst Zool. 1971;20(4):406-416. https://doi.org/10.2307/2412116
  25. Kumar S, Stecher G, Tamura K. MEGA7: molecular evolutionary genetics analysis version 7.0 for bigger datasets. Mol Biol Evol. 2016;33(7):1870-1874. https://doi.org/10.1093/molbev/msw054
  26. Beyma JFH. Mykologische Untersuchungen. Verhandelingen der Koninklijke Nederlandsche Akademie van Wetenschappen. 1929;26:1-29.
  27. Rajachan OA, Kanokmedhakul K, Soytong K, et al. Mycotoxins from the fungus Botryotrichum piluliferum. J Agric Food Chem. 2017;65(7):1337-1341. https://doi.org/10.1021/acs.jafc.6b05522
  28. Ebrahim W, Ebada SS. Antimicrobial metabolites from extremophilic fungus Botryotrichum piluliferum strain WESH19. Chem Nat Compd. 2021;57(4):654-658. https://doi.org/10.1007/s10600-021-03443-6
  29. Chigoziri E, Ekefan EJ. Seed borne fungi of chili pepper (Capsicum frutescens) from pepper producing areas of Benue state, Nigeria. ABJNA. 2013;4(4):370-374. https://doi.org/10.5251/abjna.2013.4.4.370.374
  30. Hurst CJ. Dirt and disease: the ecology of soil fungi and plant fungi that are infectious for vertebrates. In: Hurst CJ, editor. Understanding terrestrial microbial communities. Switzerland: Springer; 2019. p. 289-405.
  31. Lee SK, Suh JS, Kim YS, et al. Studies on phytotoxin in intensively cultivated upland crops II. Population and identification of soil microorganisms in rhizosphere of upland crops. J Korean Soc Soil Sci Fert. 1987;20:179-183.
  32. Nam K, Lee NK, Yum EJ, et al. Change in the composition and enzyme activity of culturable lactic acid bacteria in Nuruk during fermentation at different temperatures. Korean J Food Preserv. 2015;22(6):920-925. https://doi.org/10.11002/kjfp.2015.22.6.920
  33. Lim SK, Ten LN, Avalos-Ruiz D, et al. Isolation and identification of two unreported sordariomycetes fungi in Korea: Pestalotiopsis lavate and Botryotrichum iranicum. Kor J Mycol. 2022;50:183-194.