DOI QR코드

DOI QR Code

Multi-fidelity modeling and analysis of a pressurized vessel-pipe-safety valve system based on MOC and surrogate modeling methods

  • Xueguan Song (School of Mechanical Engineering, Dalian University of Technology) ;
  • Qingye Li (School of Mechanical Engineering, Dalian University of Technology) ;
  • Fuwen Liu (School of Mechanical Engineering, Dalian University of Technology) ;
  • Weihao Zhou (School of Mechanical Engineering, Dalian University of Technology) ;
  • Chaoyong Zong (School of Mechanical Engineering, Dalian University of Technology)
  • 투고 : 2023.01.03
  • 심사 : 2023.04.20
  • 발행 : 2023.08.25

초록

A pressurized vessel-pipe-safety valve (PVPSV) combination is a commonly used configuration in nuclear power plants, and a good numerical model is essential for the system design, sizing and performance optimization. However, owing to the large-scale and cross-scale features, it is still a challenge to build a system level numerical model with both high accuracy and efficiency. To overcome this, a novel system level modeling method which can synthesize the advantages of various models is proposed in this paper. For system modeling, the analytical approach, the method of characteristics (MOC) and the surrogate model approach are respectively adopted to predict the dynamics of the pressure vessel, the connecting pipe and the safety valve, and different models are connected through data interfaces. With this system model, dynamic simulations were carried out and both the stable and the unstable system responses were obtained. For the model verification purpose, the simulation results were compared with those obtained from experiments and full CFD simulations. A good agreement and a better efficiency were obtained, verifying the ability of the model and the feasibility of the modeling method proposed in this paper.

키워드

과제정보

This work was supported by the National Natural Science Foundation of China (No. 52205251). We would also like to thank the editors and the reviewers for their constructive comments and helpful suggestions. Thanks also to Beijing Super Cloud Computing Center.

참고문헌

  1. J. Qian, C. Hou, J. Mu, Z. Gao, Z. Jin, Valve core shapes analysis on flux through control valves in nuclear power plants, Nucl. Eng. Technol. 52 (2020) 2173-2182. https://doi.org/10.1016/j.net.2020.03.008
  2. C. Zong, M. Shi, Q. Li, F. Liu, W. Zhou, X. Song, Design optimization of a nuclear main steam safety valve based on an E-AHF ensemble surrogate model, Nucl. Eng. Technol. 54 (2022) 4181-4194. https://doi.org/10.1016/j.net.2022.06.019
  3. X. Song, L. Cui, M. Cao, W. Cao, Y. Park, W.M. Dempster, A CFD analysis of the dynamics of a direct-operated safety relief valve mounted on a pressure vessel, Energy Convers. Manag. 81 (2014) 407-419. https://doi.org/10.1016/j.enconman.2014.02.021
  4. V. Hugo Sanchez-Espinoza, K. Zhang, A. Campos Munoz, M. Bottcher, KIT Multi-scale thermal-hydraulic coupling methods for improved simulation of nuclear power plants, Nucl. Eng. Des. 405 (2023), 112218.
  5. N.N. Efimov, V.I. Parshukov, A.S. Oshchepkov, A.V. Ryzhkov, I.V. Rusakevich, E.E. Blokhin, Steam plant based on high-speed active microturbine with valve-inductor generator as part of power engineering complex for processing of CURRENT and power plant for hydrogen production, Int. J. Hydrogen Energy (2023).
  6. Y.J. Song, D.S. Lim, M.B. Heo, B.K. Kim, D.Y. Lee, D. Jo, Debris transport visualization to analyze the flow characteristics in reactor vessel for nuclear power plants, Nucl. Eng. Technol. 53 (2021) 4003-4013. https://doi.org/10.1016/j.net.2021.07.003
  7. H. Sun, Y. Zhang, W. Tian, S. Qiu, G. Su, Performance analysis of automatic depressurization system in advanced PWR during a typical SBLOCA transient using MIDAC, Nucl. Eng. Technol. 52 (2020) 937-946. https://doi.org/10.1016/j.net.2019.10.011
  8. M. Hu, Development of sound pressure identification method to detect internal leak of safety relief valves in nuclear power plants, Nucl. Eng. Des. 366 (2020), 110761.
  9. D.G. Kang, S.H. Chang, The safety assessment of OPR-1000 nuclear power plant for station blackout accident applying the combined deterministic and probabilistic procedure, Nucl. Eng. Des. 275 (2014) 142-153. https://doi.org/10.1016/j.nucengdes.2014.05.009
  10. H. Zhang, L. Zhao, S. Peng, Q. Ru, P. Liu, J. Wu, Thermal-fluid-structure analysis of fast pressure relief valve under severe nuclear accident, Nucl. Eng. Des. 371 (2021), 110937.
  11. J.E. Funk, Poppet valve stability, Journal of Basic Engineering (1964) 207-212.
  12. A. Singh, An analytical study of the dynamics and stability of a spring loaded safety valve, Nucl. Eng. Des. 72 (1982) 197-204. https://doi.org/10.1016/0029-5493(82)90215-1
  13. R. Darby, The dynamic response of pressure relief valves in vapor or gas service, part I: mathematical model 26 (2013) 1262-1268.
  14. A.A. Aldeeb, R. Darby, S. Arndt, The dynamic response of pressure relief valves in vapor or gas service, Part II: experimental investigation 31 (2014) 127-132.
  15. R. Darby, A.A. Aldeeb, The dynamic response of pressure relief valves in vapor or gas service, Part III: model validation 31 (2014) 133-141.
  16. C.J. Hos, A.R. Champneys, K. Paul, M. McNeely, Dynamic behavior of direct spring loaded pressure relief valves in gas service: model development, measurements and instability mechanisms 31 (2014) 70-81.
  17. C.J. Hos, A.R. Champneys, K. Paul, M. McNeely, Dynamic behaviour of direct spring loaded pressure relief valves in gas service, II reduced order modelling 36 (2015) 1-12.
  18. C.J. Hos, A.R. Champneys, K. Paul, M. McNeely, Dynamic behaviour of direct spring loaded pressure relief valves, III valves in liquid service 43 (2016) 1-9.
  19. S. El Bouzidi, M. Hassan, S. Ziada, Acoustic methods to suppress self-excited oscillations in spring-loaded valves, J. Fluid Struct. 85 (2019) 126-137. https://doi.org/10.1016/j.jfluidstructs.2018.12.007
  20. F. Zheng, C. Zong, C. Zhang, X. Song, F. Qu, W. Dempster, Dynamic instability analysis of a spring-loaded pressure safety valve connected to a pipe by using computational fluid dynamics methods, J Press Vess-T Asme. 143 (2021) 41401-41403. https://doi.org/10.1115/1.4049148
  21. C. Zong, F. Zheng, W. Dempster, D. Chen, X. Song, High-fidelity computational fluid dynamics modeling and analysis of a pressure vessel- pipe-safety valve system in gas service, J Press Vess-T Asme 143 (2021) 41701-41702. https://doi.org/10.1115/1.4049147
  22. J. Qian, L. Wei, G. Zhu, F. Chen, Z. Jin, Transmission loss analysis of thick perforated plates for valve contained pipelines, Energy Convers. Manag. 109 (2016) 86-93. https://doi.org/10.1016/j.enconman.2015.11.058
  23. X.G. Song, L. Wang, Y.C. Park, Transient analysis of a spring-loaded pressure safety valve using computational fluid dynamics (CFD), J Press Vess-T Asme. 132 (2010), 54501.
  24. F.J. Zheng, C.Y. Zong, W. Dempster, F.Z. Qu, X.G. Song, A multidimensional and multiscale model for pressure analysis in a reservoir-pipe-valve system, J Press Vess-T Asme 141 (2019) 51601-51603. https://doi.org/10.1115/1.4043383
  25. X. Song, G. Sun, G. Li, W. Gao, Q. Li, Crashworthiness optimization of foam-filled tapered thin-walled structure using multiple surrogate models, Struct Multidiscip O 47 (2013) 221-231.
  26. C. Zong, Q. Li, K. Li, X. Song, D. Chen, X. Li, X. Wang, Computational fluid dynamics analysis and extended adaptive hybrid functions model-based design optimization of an explosion-proof safety valve, Eng Appl Comp Fluid 16 (2022) 296-315.
  27. U. Thakre, R.G. Mote, Uncertainty quantification and statistical modeling of selective laser sintering process using polynomial chaos based response surface method, J. Manuf. Process. 81 (2022) 893-906. https://doi.org/10.1016/j.jmapro.2022.07.022
  28. C. Anders, I. Hooley, D.M. Kivlighan, The nature of a pandemic: testing the relationship between access to nature, nature relatedness, wellbeing and belonging in nature using polynomial regression with response surface analysis, J. Environ. Psychol. 85 (2023), 101949.
  29. C. Chen, D. Ran, Y. Yang, H. Hou, C. Peng, TOPSIS based multi-fidelity Co-Kriging for multiple response prediction of structures with uncertainties through real-time hybrid simulation, Eng. Struct. 280 (2023), 115734.
  30. Y. Chen, D. Zhang, X. Li, Y. Peng, X. Zhang, Z. Han, Y. Cao, Z. Dong, Surrogate models for twin-VAWT performance based on Kriging and artificial neural networks, Ocean Eng. 273 (2023), 113947.
  31. E. Denimal, J.J. Sinou, Efficient parametric study of a stochastic airfoil system based on hybrid surrogate modeling with advanced automatic kriging construction, Eur. J. Mech. Solid. 99 (2023), 104926.
  32. X. Liu, X. Dong, L. Zhang, J. Chen, C. Wang, Least squares support vector regression for complex censored data, Artif. Intell. Med. 136 (2023), 102497.
  33. S. Haoyuan, M. Yizhong, L. Chenglong, Z. Jian, L. Lijun, Hierarchical Bayesian support vector regression with model parameter calibration for reliability modeling and prediction, Reliab. Eng. Syst. Saf. 229 (2023), 108842.
  34. L. Kou, M. Sysyn, J. Liu, S. Fischer, O. Nabochenko, W. He, Prediction system of rolling contact fatigue on crossing nose based on support vector regression, Measurement 210 (2023), 112579.
  35. K. Segeth, Spherical radial basis function approximation of some physical quantities measured, J. Comput. Appl. Math. 427 (2023), 115128.
  36. C.Z. Shi, H. Zheng, P.H. Wen, Y.C. Hon, The local radial basis function collocation method for elastic wave propagation analysis in 2D composite plate, Eng. Anal. Bound. Elem. 150 (2023) 571-582.
  37. N. Hvala, P. Mlakar, B. Grasic, M.Z. Boznar, M. Perne, J. Kocijan, Surrogate tree ensemble model representing 2D population doses over complex terrain in the event of a radiological release into the air, Prog. Nucl. Energy 158 (2023), 104594.
  38. R. Shams, S. Alimohammadi, J. Yazdi, Optimized stacking, a new method for constructing ensemble surrogate models applied to DNAPL-contaminated aquifer remediation, J. Contam. Hydrol. 243 (2021), 103914.
  39. G. Xu, H. Wei, J. Wang, X. Chen, B. Zhu, A local weighted linear regression (LWLR) ensemble of surrogate models based on stacking strategy: application to hydrodynamic response prediction for submerged floating tunnel (SFT), Appl. Ocean Res. 125 (2022), 103228.
  40. F. Serafin, O. David, J.R. Carlson, T.R. Green, R. Rigon, Bridging technology transfer boundaries: integrated cloud services deliver results of nonlinear process models as surrogate model ensembles, Environ. Model. Software 146 (2021), 105231.
  41. L. Lv, C. Zong, C. Zhang, X. Song, W. Sun, Multi-fidelity surrogate model based on canonical correlation analysis and least squares, J. Mech. Des. 143 (2021) 21701-21705. https://doi.org/10.1115/1.4047690
  42. X. Song, L. Lv, J. Li, W. Sun, J. Zhang, An advanced and robust ensemble surrogate model: extended adaptive hybrid functions, J. Mech. Des. 140 (2018) 41401-41402. https://doi.org/10.1115/1.4038927
  43. L. Yang, Z. Wang, W. Dempster, X. Yu, S. Tu, Experiments and transient simulation on spring-loaded pressure relief valve under high, Temperature and high pressure steam conditions 45 (2017) 133-146.
  44. K. Geng, C. Hu, C. Yang, R. Rong, Numerical investigation on transient aerothermal characteristics of a labyrinth regulating valve for nuclear power plant, Nucl. Eng. Des. 382 (2021), 111369.
  45. B. Sreejith, K. Jayaraj, N. Ganesan, C. Padmanabhan, P. Chellapandi, P. Selvaraj, Finite element analysis of fluid-structure interaction in pipeline systems, Nucl. Eng. Des. 227 (2004) 313-322. https://doi.org/10.1016/j.nucengdes.2003.11.005
  46. F.J. Zheng, C.Y. Zong, Q.Y. Li, F.Z. Qu, X.G. Song, An experimentally validated multifidelity hybrid model for analyzing the pressure variation of a relief system, Int. J. Pres. Ves. Pip. 191 (2021), 104315.
  47. R. Flatt, A singly-iterative second-order method of characteristics for unsteady compressible one-dimensional flows, Commun. Appl. Numer. Methods 1 (1985) 269-274. https://doi.org/10.1002/cnm.1630010603
  48. M. Kandil, A.M. Kamal, T.A. El-Sayed, Effect of pipematerials on water hammer, Int. J. Pres. Ves. Pip. 179 (2020), 103996.
  49. Q. Li, C. Zong, F. Liu, A. Zhang, T. Xue, X. Yu, X. Song, Numerical and experimental analysis of fluid force for nuclear valve, Int. J. Mech. Sci. 241 (2023), 107939.