Acknowledgement
In the first version of the manuscript the scattering parameter was taken in interval |t| ≤ 1 as in the original paper for AG scattering function. With a short analysis I did thanks to the criticism of the referees, the definition range of the scattering parameter must be - 0:54 ≤ t ≤ 0:54. Therefore, it is my debt to thank the referees for contributing to the scientific value of my study. I also want to thank Prof. F. Anli for helpful discussions.
References
- B. Davison, Neutron Transport Theory, Oxford University Press, London, 1958.
- G.J. Mitsis, Transport solutions to the one-dimensional critical problem, Nucl. Sci. Eng. 17 (1963) 55-64. https://doi.org/10.13182/NSE63-A17210
- K.M. Case, Elementary solutions of the transport equation and their applications, Ann. Phys. 9 (1960) 1-23. https://doi.org/10.1016/0003-4916(60)90060-9
- K.M. Case, P.F. Zweifel, Linear Transport Theory, Addition-Wesley, Massachusetts, 1967.
- I. Carlvik, Monoenergetic critical parameters and decay constants for small homogeneous spheres and thin homogeneous slabs, Nucl. Sci. Eng. 31 (1968) 295-303. https://doi.org/10.13182/NSE31-295
- D.C. Sahni, N.G. Sjostrand, Criticality and time eigenvalues for one-speed € neutron transport, Prog. Nucl. Energy 23 (1990) 241-289. https://doi.org/10.1016/0149-1970(90)90004-O
- D.C. Sahni, Some new results pertaining to criticality and time eigenvalues of one-speed neutron transport equation, Prog. Nucl. Energy 30 (1996) 305-320. https://doi.org/10.1016/0149-1970(95)00092-5
- D.C. Sahni, N.G. Sjostrand, Non-monotonic variation of the criticality factor with the degree of anisotropy in one-speed neutron transport, Transport Theor. Stat. Phys. 20 (1991) 339-349. https://doi.org/10.1080/00411459108203910
- D.C. Sahni, N.G. Sjostrand, Criticality eigenvalues of the one-speed transport € equation with strong forward-backward scattering -relationship with rod model, Transport Theor. Stat. Phys. 27 (1998) 137-158. https://doi.org/10.1080/00411459808205812
- E. Inonu, A Theorem on anisotropic scattering, Transport Theor. Stat. Phys. 3 (1973) 137-146. https://doi.org/10.1080/00411457308205276
- E.B. Dahl, N.G. Sjostrand, Eigenvalue spectrum of multiplying slabs and spheres for monoenergetic neutrons with anisotropic scattering, Nucl. Sci. Eng. 69 (1979) 114-125. https://doi.org/10.13182/NSE69-114
- N.S. Garis, One-speed neutron transport eigenvalues for reflected slabs and spheres, Nucl. Sci. Eng. 107 (1991) 343-358. https://doi.org/10.13182/NSE91-A23796
- N.S. Garis, N.G. Sjostrand, Eigenvalues for reflecting boundary conditions in one-speed neutron transport theory, Ann. Nucl. Energy 21 (1994) 67-80. https://doi.org/10.1016/0306-4549(94)90064-7
- C.E. Siewert, M.M.R. Williams, The effect of anisotropic scattering on the critical slab problem in neutron transport theory using a synthetic kernel, J. Phys. Appl. Phys. 10 (1977) 2031-2040. https://doi.org/10.1088/0022-3727/10/15/007
- A. Kavenoky, The CN method of solving the transport equation: application to plane geometry, Nucl. Sci. Eng. 65 (1978) 209-225. https://doi.org/10.13182/NSE78-A27152
- P. Grandjean, C.E. Siewert, The FN method in neutron-transport theory. Part II: applications and numerical results, Nucl. Sci. Eng. 69 (1979) 161-168. https://doi.org/10.13182/NSE79-A20608
- M.A. Atalay, The critical slab problem for reflecting boundary conditions in one-speed neutron transport theory, Ann. Nucl. Energy 23 (1996) 183e193.
- C. Tezcan, A. Kaskas, M.C. Gulecyuz, The HN method for solving linear transport equation: theory and applications, J. Quant. Spectrosc. Radiat. Transf. 78 (2003) 243-254. https://doi.org/10.1016/S0022-4073(02)00224-8
- R.G. Tureci, M.C. Gulecyuz, A. Kaskas, C. Tezcan, Application of the HN method to the critical slab problem for reflecting boundary conditions, J. Quant. Spectrosc. Radiat. Transf. 88 (2004) 499-517. https://doi.org/10.1016/j.jqsrt.2004.04.001
- M.C. Gulecyuz, R.G. Tureci, C. Tezcan, The critical slab problem for linearly anisotropic scattering and reflecting boundary conditions with the HN method, Kerntechnik 71 (2006) 149-154. https://doi.org/10.3139/124.100288
- R.G. Tureci, M.C. Gulecyuz, The slab albedo and criticality problem for the quadratic scattering kernel with the H-N method, Kerntechnik 73 (2008) 171-175. https://doi.org/10.3139/124.100564
- J.R. Mika, Neutron transport with anisotropic scattering, Nucl. Sci. Eng. 11 (1961) 415-427. https://doi.org/10.13182/NSE61-1
- D. Gulderen, D.C. Sahni, R.G. Tureci, A. Aydin, The Milne problem for linear-triplet anisotropic scattering with HN method, J. Comput. Theor. Transp. 51 (2022) 329-353. https://doi.org/10.1080/23324309.2022.2141779
- H. Koklu, O. Ozer, Analyzing of the scattering coefficients in the neutron transport equation for critical systems, J. Comput. Theor. Transp. 51 (2022) 112-138. https://doi.org/10.1080/23324309.2022.2091601
- F. Anli, F. Yasa, S. Gungor, General Eigenvalue Spectrum in a One-Dimensional Slab Geometry Transport Equation, Nucl. Sci. Eng. 150 (2005) 72-77. https://doi.org/10.13182/NSE05-A2502
- A. Bulbul, F. Anli, Criticality calculations with PN approximation for certain scattering parameters of Anli-Gungor and Henyey-Greenstein phase functions in spherical geometry, Kerntechnik 80 (2015) 161-166. https://doi.org/10.3139/124.110470
- H. Ozturk, O. Ege, Solution of the € finite slab criticality problem using an alternative phase function with the second kind of Chebyshev polynomials, Nucl. Sci. Tech. 30 (2019) 1-7. https://doi.org/10.1007/s41365-018-0540-8
- H. Ozturk, F. Anli, Diffusion approximation for certain scattering parameters of the Anli-Gungor phase function, Kerntechnik 77 (2012) 381-384. https://doi.org/10.3139/124.110216
- B.R. Maleki, Using the Monte Carlo Method to Solve the Half-Space and Slab Albedo Problems with Inonu and Anli-Gungor Strongly Anisotropic Scattering Functions, Nucl. Eng. Technol. 55 (2023) 324-329. https://doi.org/10.1016/j.net.2022.09.024
- R.G. Tureci, The Slab Albedo problem with the Anli-Gungor scattering function, Indian J. Phys. (2023), https://doi.org/10.1007/s12648-023-02625-y.
- R.G. Tureci, A. Bulbul, Case's method for anli-gungor scattering formula, Suleyman Demirel universitesi Fen Edebiyat Fakultesi Fen Dergisi 17 (2022) 1-8. https://doi.org/10.29233/sdufeffd.925308
- R.G. McClarren, Calculating time eigenvalues of the neutron transport equation with dynamic mode decomposition, Nucl. Sci. Eng. 193 (2019) 854-867. https://doi.org/10.1080/00295639.2018.1565014
- A. Gupta, R.S. Modak, Evaluation of dominant time-eigenvalues of neutron transport equation by Meyer's sub-space iterations, Ann. Nucl. Energy 38 (2011) 1680-1686. https://doi.org/10.1016/j.anucene.2011.02.016
- D.E. Kornreich, D.K. Parsons, Time-eigenvalue calculations in multi-region Cartesian geometry using Green's functions, Ann. Nucl. Energy, 32, (205) 964-985.
- R. Sanchez, D. Tomatis, I. Zmijarevic, H.G. Joo, Analysis of alpha modes in multigroup diffusion, Nucl. Eng. Technol. 49 (2017) 1259-1268. https://doi.org/10.1016/j.net.2017.07.007
- Wolfram Research, Inc., Mathematica, Champaign, IL, 2023. Version 12.2.
- R.L. Burden, R. Burden, J.D. Faires, A.M. Burden, in: Numerical Analysis, 10th ed, Cengage Editor, Cenveo, 2016.