DOI QR코드

DOI QR Code

Fourier series-based analysis of class-D converters with asymmetrical control for inductive power transfer

  • Aaron D. Scher (Department of Electrical Engineering and Renewable Energy, Oregon Institute of Technology)
  • Received : 2022.05.07
  • Accepted : 2023.02.09
  • Published : 2023.08.20

Abstract

This paper presents a steady-state Fourier series-based analysis (FSA) of class-D converters driven by general asymmetrical switching waveforms and its application to the design of inductive power transfer (IPT) systems. This formulation of the FSA extends an earlier analysis that was strictly limited to the symmetrically driven case. For analyzing asymmetrical waveforms, the presented FSA provides an advantage over other multi-harmonic approaches that either use less approximate, simplified circuits to model the nonlinear rectifier or involve a larger number of unknowns that scale with the number of harmonics. While the presented method is restricted to continuous conduction mode (CCM) operation, it only requires solving for two unknowns (the time delay and duty cycle of the rectangular switching waveform at the rectifier's input), independent of the number of harmonics considered. IPT systems are commonly operated in CCM, and the FSA is applied to the analysis and design of a series-series compensated IPT system with asymmetrical duty cycle control, in which the optimal switching frequency and input voltage are selected to maximize efficiency subject to design constraints for ensuring low switching losses. Finally, a web-based IPT calculator application is presented to showcase the practicality and usefulness of the FSA.

Keywords

Acknowledgement

The author thanks Dr. Mostak Mohammad for his valuable feedback regarding the IPT calculator.

References

  1. Rim, C.T., Mi, C.: Wireless Power Transfer for Electric Vehicles and Mobile Devices. Wiley-IEEE Press, New York (2017)
  2. Patil, D., McDonough, M.K., Miller, J.M., Fahimi, B., Balsara, P.T.: Wireless power transfer for vehicular applications: overview and challenges. IEEE Trans. Transp. Electrif. 4(1), 3-37 (2018) https://doi.org/10.1109/TTE.2017.2780627
  3. Zhang, Z., Pang, H., Georgiadis, A., Cecati, C.: Wireless power transfer-an overview. IEEE Trans. Ind. Electron. 66(2), 1044-1058 (2019) https://doi.org/10.1109/TIE.2018.2835378
  4. Liu, Y., Madawala, U.K., Mai, R., He, Z.: An optimal multivariable control strategy for inductive power transfer systems to improve efficiency. IEEE Trans. Power Electron. 35(9), 8998-9010 (2020) https://doi.org/10.1109/TPEL.2020.2970780
  5. Burdio, J.M., Barragan, L.A., Monterde, F., Navarro, D., Acero, J.: Asymmetrical voltage-cancellation control for full-bridge series resonant inverters. IEEE Trans. Power Electron. 19(2), 461-469 (2004) https://doi.org/10.1109/TPEL.2003.823250
  6. Barragan, L.A., Burdio, J.M., Artigas, J.I., Navarro, D., Acero, J., Puyal, D.: Efficiency optimization in ZVS series resonant inverters with asymmetrical voltage-cancellation control. IEEE Trans. Power Electron. 20(5), 1036-1044 (2005) https://doi.org/10.1109/TPEL.2005.854024
  7. Sharp, B., Wu, H.: Asymmetrical voltage-cancellation control for LCL resonant converters in inductive power transfer systems. Proceedings of 2012 Twenty-Seventh Annual IEEE Applied Power Electronics Conference and Exposition (APEC), pp. 661-666 (2012)
  8. Vishnuram, P., Ramachandiran, G., Babu, T.S., Nastasi, B.: Induction heating in domestic cooking and industrial melting applications: a systematic review on modelling, converter topologies and control schemes. Energies 14(20), 6634 (2021)
  9. Forsyth, A.J., Ward, G.A., Mollov, S.V.: Extended fundamental frequency analysis of the LCC resonant converter. IEEE Trans. Power Electron. 18(6), 1286-1292 (2003) https://doi.org/10.1109/TPEL.2003.818826
  10. Bucher, A., Duerbaum, T.: Analysis and design of a contactless power transmission system based on the extended first harmonic approximation. Proceedings of 2012 IEEE Industry Applications Society Annual Meeting, pp. 1-7 (2012)
  11. Bucher, A., Kuebrich, D., Duerbaum, T.: Comprehensive design approach for a two-stage fixed-frequency contactless energy transfer system based on the extended first harmonic approximation. Proceedings of 2016 18th European Conference on Power Electronics and Applications (EPE'16 ECCE Europe), pp. 2-13 (2016)
  12. Safaee, A., Woronowicz, K.: Time-domain analysis of voltage-driven series-series compensated inductive power transfer topology. IEEE Trans. Power Electron. 32(7), 4981-5003 (2017) https://doi.org/10.1109/TPEL.2016.2633940
  13. Pantic, Z., Bai, S., Lukic, S.M.: ZCS LCC-compensated resonant inverter for inductive-power-transfer application. Ind. Electron. 58(8), 3500-3510 (2011) https://doi.org/10.1109/TIE.2010.2081954
  14. Feng, H., Zhang, X., Cai, T., Duan, S., Zhao, J.: Optimization of LCL resonant inverter in inductive power transfer systems based on high-order harmonics analysis. Proceedings of 2015 IEEE Energy Conversion Congress and Exposition (ECCE), pp. 1301-1305 (2015)
  15. Sankar, A.U., Mallik, A., Khaligh, A.: Extended harmonic analysis of wireless charging systems. Proceedings of IECON 2018-44th Annual Conference of the IEEE Industrial Electronics Society, pp. 5165-5170 (2018)
  16. Fang, Y., Pong, B.M.H.: Multiple harmonics analysis for variable frequency asymmetrical pulsewidth-modulated wireless power transfer systems. IEEE Trans. Ind. Electron. 66(5), 4023-4030 (2019) https://doi.org/10.1109/TIE.2018.2850015
  17. Zhang, H., Wang, Y., Zhu, C., Mei, Y., Xu, T., Lu, F.: The high order harmonic distortion phenomenon in the strongly coupled IPT system and Its reduction method. Proceedings of 2019 IEEE Energy Conversion Congress and Exposition (ECCE), pp. 4223-4228 (2019)
  18. Fang, Y., Pong, B.M.H., Hui, R.S.Y.: An enhanced multiple harmonics analysis method for wireless power transfer systems. IEEE Trans. Power Electron. 35(2), 1205-1216 (2020) https://doi.org/10.1109/TPEL.2019.2925050
  19. Bhat, A.K.S.: A generalized steady-state analysis of resonant converters using two-port model and Fourier-series approach. IEEE Trans. Power Electron. 13(1), 142-151 (1998) https://doi.org/10.1109/63.654968
  20. Scher, A. D.: Calculator for IPT systems. https://wireless-power-transfer.github.io/IPT-calculator/ (2022). Accessed 16 December 2022
  21. Aldhaher, S.: Design and optimization of switched-mode circuits for inductive links, Ph.D. Dissertation, Cranfield Univ. (2014)
  22. Kazimierczuk, M.K., Czarkowski, D.: Resonant Power Converters. Wiley, New York (2011)
  23. Kkelis, G., Yates, D. C., Mitcheson, P.D.: Comparison of current driven Class-D and Class-E half-wave rectifiers for 6.78 MHz high power IPT applications. Proceedings of 2015 IEEE Wireless Power Transfer Conference (WPTC), pp. 1-4 (2015)
  24. El-Hamamsy, S.A.: Design of high-efficiency RF Class-D power amplifier. IEEE Trans. Power Electron. 9(3), 297-308 (1994) https://doi.org/10.1109/63.311263
  25. De Simone, S.: LLC resonant half-bridge converter design guideline. https://www.st.com/content/ccc/resource/technical/document/application_note/31/fb/59/5e/93/8c/42/b9/CD00143244.pdf/files/CD00143244.pdf/jcr:content/translations/en.CD00143244.pdf (2022). Accessed 16 December 2022