DOI QR코드

DOI QR Code

Estimation of switching losses considering non-linear parasitic capacitances of GaN E-HEMT

  • Inwon Lee (Department of Electrical and Electronics Engineering, Konkuk University) ;
  • Dongkwan Yoon (Department of Electrical and Electronics Engineering, Konkuk University) ;
  • Younghoon Cho (Department of Electrical and Electronics Engineering, Konkuk University)
  • Received : 2023.03.09
  • Accepted : 2023.05.16
  • Published : 2023.08.20

Abstract

The power loss estimation of a gallium nitride enhancement-mode high electron mobility transistor (GaN E-HEMT) is necessary to optimize a thermal model of a power conversion system. However, many manufacturers do not provide a switching energy in their datasheets. To estimate switching energy using information provided in the datasheet, the parasitic capacitance of the GaN E-HEMT is utilized. The switching loss of the GaN E-HEMT can be easily obtained with a conventional method. However, this process does not consider nonlinearity of the parasitic capacitance, which results in large errors and makes thermal model optimization impossible. This paper proposes an enhanced switching loss calculation model considering the non-linear parasitic capacitances of a GaN E-HEMT. To obtain accurate switching energy, a second-order exponential function using regression analysis is used to model the non-linear parasitic capacitance of the GaN E-HEMT. A theoretical analysis of the proposed method has been discussed. Then a double pulse test (DPT) has been performed to verify the proposed method. The proposed method almost corresponds to the experimental results within±20%, and it provides a simple and intuitive capacitance model.

Keywords

Acknowledgement

This work was partly supported by the Korea Institute of Energy Technology Evaluation and Planning (KETEP) grant funded by the Korea government (MOTIE) (202110130003, Development of High Effciency Power Converter based on Multidisciplinary Design and Optimization Platform), and the Korea Institute of Energy Technology Evaluation and Planning (KETEP) grant funded by the Korea government (MOTIE) (20206910100160, Smart PCS commercialization technology based on modularization of power conversion core elements)

References

  1. Chen, J., Luo, Q., Huang, J., He, Q., Du, X.: A complete switching analytical model of low-voltage eGaN HEMTs and Its application in loss analysis. IEEE Trans. Ind. Electron. 67(2), 1615-1625 (2020) https://doi.org/10.1109/TIE.2019.2891466
  2. Wang, K., Yang, X., Li, H., Ma, H., Zeng, X., Chen, W.: An analytical switching process model of low-voltage eGaN HEMTs for loss calculation. IEEE Trans. Power Electron. 31(1), 635-647 (2015) https://doi.org/10.1109/TPEL.2015.2409977
  3. GaN Systems GS66516B datasheet, [online] Available: https://gansystems.com/
  4. Nexperia GAN041-650WSBQ datasheet, [online] Available: https://www.nexperia.com/
  5. Infneon, IGOT60R070D1 datasheet, [online] Available: https://www.infneon.com/
  6. Brown, J.: Modeling the switching performance of a MOSFET in the high side of a non-isolated buck converter. IEEE Trans. Power Electron. 21(1), 3-10 (2006)
  7. Guo, J., Ge, H., Ye, J., & Emadi, A. (2015) Improved method for MOSFET voltage rise-time and fall-time estimation in inverter switching loss calculation. 2015 IEEE Transportation Electrification Conference and Expo (ITEC) 1-6
  8. Luo, Y., Afrasiabi, S. N., Lai, C., & Pillay, P. (2020) An Improved Method to Estimate Turn-on Switching Loss of 650V GaN HEMTs in Hard-switching Topology. 2020 23rd International Conference on Electrical Machines and Systems (ICEMS), 1078-1083
  9. Wang, K., Tian, M., Li, H., Zhang, F., Yang, X., & Wang, L. (2016) An improved switching loss model for a 650V enhancement-mode GaN transistor. 2016 IEEE 2nd Annual Southern Power Electronics Conference (SPEC), 1-6
  10. Toshiba Application Note, "Power MOSFET Electrical Characteristic," https://toshiba-semicon-storage.com/info/docget.jsp?did=13415
  11. de Paula, W.J., Tavares, G.H.M., Soares, G.M., Almeida, P.S., Braga, H.A.C.: Switching losses prediction methods oriented to power MOSFETs-a review. IET Power Electron. 13(14), 2960-2970 (2020) https://doi.org/10.1049/iet-pel.2019.1003
  12. Prado, E.O., Bolsi, P.C., Sartori, H.C., Pinheiro, J.R.: Simple analytical model for accurate switching loss calculation in power MOSFETs using non-linearities of Miller capacitance. IET Power Electron. 15(7), 594-604 (2022) https://doi.org/10.1049/pel2.12252
  13. Infneon Application Note AN2, "PFC boost converter design guide," https://community.infneon.com/gfawx74859/attachments/gfawx74859/powermanagement/751/1/Infneon-ApplicationNote_PFCCCMBoostConverterDesignGuide-AN-v02_00-EN.pdf
  14. Xiong, Y., Sun, S., Jia, H., Shea, P., Shen, Z.J.: New physical insights on power MOSFET switching losses. IEEE Trans. Power Electron. 24(2), 525-531 (2009)
  15. Qi, Z., Pei, Y., Wang, L., Wang, K., Zhu, M., Zhao, C., Gan, Y.: An accurate datasheet-based full-characteristics analytical model of GaN HEMTs for deadtime optimization. IEEE Trans. Power Electron. 36(7), 7942-7955 (2020)