피부색 칼라 분포 특성을 이용한 조명 색도 검출

Estimation of Illuminant Chromaticity by Analysis of Human Skin Color Distribution

  • 김정엽 (영산대학교 성심교양대학)
  • 투고 : 2023.08.19
  • 심사 : 2023.10.19
  • 발행 : 2023.10.30

초록

본 논문에서는 영상을 촬영한 장면의 조명 색도를 추정하는 방법을 제안한다. 기존의 피부색을 이용한 조명 색도 추정 방법은 Storring, Bianco 등이 제안하였다. Storring은 피부색 분포 특성, 완전 복사체 궤적을 이용하였으나 완전 복사체 궤적과 CIE-xy 자료의 연계성이 저하되는 문제가 있다. Bianco 등은 표준조명에서의 피부색 분포와 입력 영상의 피부색 분포를 대조하여 조명 색도를 추정하였다. 이 방법은 다양한 조명에서의 피부색을 최대한 많이 측정하고 확보하기가 어렵다. 제안한 방법은 피부색도 정보와 조명색도 간의 관계를 분석하여 임의의 입력 영상에 대한 조명 색도를 추정할 수 있다. 추정 방법은 분석단계와 테스트 단계로 구분되며, 데이터 셋을 분석 군과 테스트 군으로 분류하여 사용하였다. 분석 군의 모든 입력영상으로부터 각각 피부색 영역을 구하여 피부 색도를 계산한다. 피부 색도의 평균값 집합과 기준 조명 색도 집합의 상관 관계를 분석하여 사상을 구한다. 계산된 사상을 분석 군의 모든 입력 영상에 적용하여 조명 색도를 추정하고 기준 조명색도와의 오차를 계산하고, 오차의 변화가 없을 때까지 상기 과정을 반복하여 안정적인 사상을 구한다. 구해진 사상을 분석 단계와 유사하게 테스트 군 영상에 적용하여 조명 색도를 추정한다. 피부영역과 조명 기준정보가 포함된 데이터 셋이 독립적으로 존재하지 않기 때문에 인텔 TAU 데이터셋의 영상 일부를 이용하여 실험 데이터 셋을 구성하였다. 유사한 이론 기반의 기존 방법인 Finlayson에 비하여 40% 이상, Zhang에 대해서는 11%, Kim에 대해서는 16% 정도의 성능개선을 보였다.

This paper proposes a method of estimating the illumination chromaticity of a scene in which an image is taken. Storring and Bianco proposed a method of estimating illuminant chromaticity using skin color. Storring et al. used skin color distribution characteristics and black body locus, but there is a problem that the link between the locus and CIE-xy data is reduced. Bianco et al. estimated the illuminant chromaticity by comparing the skin color distribution in standard lighting with the skin color distribution in the input image. This method is difficult to measure and secure as much skin color as possible in various illumination. The proposed method can estimate the illuminant chromaticity for any input image by analyzing the relationship between the skin color information and the illuminant chromaticity. The estimation method is divided into an analysis stage and a test stage, and the data set was classified into an analysis group and a test group and used. Skin chromaticity is calculated by obtaining skin color areas from all input images of the analysis group, respectively. A mapping is obtained by analyzing the correlation between the average set of skin chromaticity and the reference illuminant chromaticity set. The calculated mapping is applied to all input images of the analysis group to estimate the illuminant chromaticity, calculate the error with the reference illuminant chromaticity, and repeat the above process until there is no change in the error to obtain a stable mapping. The obtained mapping is applied to the test group images similar to the analysis stage to estimate the illuminant chromaticity. Since there is no independent data set containing skin area and illuminant reference information, the experimental data set was made using some of the images of the Intel TAU data set. Compared to Finlayson, a similar theory-based existing method, it showed performance improvement of more than 40%, Zhang 11%, and Kim 16%.

키워드

과제정보

This work was supported by Youngsan University Research Fund of 2023

참고문헌

  1. E. H. Land, "Color Vision and the Natural Image," Proc. Nat'l Academy of Science USA, 1983, Vol.45, pp.115-129, 1959; Vol.45, pp.636-644, 1959; Vol.80, pp.5163-5169. https://doi.org/10.1073/pnas.45.4.636
  2. G. J. Klinker, S. A. Shafer, and T. Kanade, "The Measurement of Highlights in Color Images," Int'l J. Computer Vision, Vol.2, pp.7-32, 1988. https://doi.org/10.1007/BF00836279
  3. H. C. Lee, "Method for computing the scene-illuminant chromaticity from specular highlights," J. Opt Soc. Am., A, Vol.3, No.10, pp. 1694-1699, 1986. https://doi.org/10.1364/JOSAA.3.001694
  4. L. T. Maloney and B. A. Wandell, "A Computational Model for Color Constancy," J. Optical Soc. Am., A, Vol.3, pp.29-33, 1986. https://doi.org/10.1364/JOSAA.3.000029
  5. D. A. Forsyth, "A Novel Algorithm for Color Constancy," Int'l J. Computer Vision, Vol.5, No.1, pp.5-36, 1990. https://doi.org/10.1007/BF00056770
  6. G. Finlayson, S. Hordley and P. Hubel, "Color by correlation: a simple, unifying framework for color constancy," IEEE Transactions on Pattern Analysis and Machine Intelligence, Vol. 23, No. 11, pp.1209-1221, 2001. https://doi.org/10.1109/34.969113
  7. X. Zhang, S. Yue, R. Gong, Q. Li, "Illumination estimation based on a weighted color distribution," Optik, Vol. 185, pp.965-971, 2019. https://doi.org/10.1016/j.ijleo.2019.04.001
  8. S. Bianco, C. Cusano, R. Schettini, "Color constancy using CNNs," Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, 2015.
  9. J. Y. Kim, "Estimation of Illuminant Chromaticity by Equivalent Distance Reference Illumination Map and Color Correlation," KIPS Transactions on Software and Data Engineering, Vol. 12, No. 6, pp. 267-274, 2023. https://doi.org/10.3745/KTSDE.2023.12.6.267
  10. https://doi.org/10.3745/KTSDE.2023.12.6.267
  11. M. Storring, H. J. Andersen and E. Granum, "Estimation of the illuminant colour from human skin colour," Proceedings Fourth IEEE International Conference on Automatic Face and Gesture Recognition, Grenoble, France, 2000, pp.64-69.
  12. M. Storring, E. Granum, and H. J. Andersen, "Estimation of the Illuminant Color using Highlights from Human Skin," International Conference on Color in Graphics and Image Processing(CGIP), 2000.
  13. S. Bianco and R. Schettin, "Face-Based Illuminant Estimation," ECCV 2012: Computer Vision - Workshops and Demonstrations, 2012, pp.623-626.
  14. J. Kim, N. Kim, "Adversarial Learning-Based Image Correction Methodology for Deep Learning Analysis of Heterogeneous Images," KIPS Trans. Software and Data Engineering, Vol.10, No.11, pp.457-464, 2021. https://doi.org/10.3745/KTSDE.2021.10.11.457
  15. P. V. Gehler, C. Rother, A. Blake, T. Sharp and T. Minka," Bayesian Color Constancy Revisited," Proceedings of the IEEE Computer Society Conference on Computer Vision and Pattern Recognition, 2008.
  16. E. Ershov, A. Savchik, I. Semenkov, N. Banic, A. Belokopytov, D. Senshina, K. Koscevic, M. Subasic, S. Loncaric,"The Cube++ Illumination Estimation Dataset", IEEE access, 8, pp.227511- 227527, 2020. https://doi.org/10.1109/ACCESS.2020.3045066
  17. G. D. Finlayson, G. Hemrit, A. Gijsenij and P. Gehler, "A curious problem with using the colour checker dataset for illuminant estimation", Proc. Color Imaging Conference, 2017, Vol. 25, pp. 64- 69.
  18. F. Laakom, J. Raitoharju, J. Nikkanen, A. Iosifidis and M. Gabbouj, "INTEL-TAU: A Color Constancy Dataset," in IEEE Access, Vol. 9, pp. 39560-39567, 2021. https://doi.org/10.1109/ACCESS.2021.3064382
  19. K. Bahmani, R. Plesh, C. Sahu, M. Banavar and S. Schuckers, "SREDS: A dichromatic separation based measure of skin color," 2021 IEEE International Workshop on Biometrics and Forensics (IWBF), Rome, Italy, 2021, pp. 1-6.
  20. T. Weyrich, W. Matusik, H. Pfister, J. Lee, A. Ngan, H. W. Jensen, M. Gross, "A MeasurementBased Skin Reflectance Model for Face Rendering and Editing", Tech. Rep. TR2005-047, Mitsubishi Electric Research Laboratories, Cambridge, MA, July, 2005.
  21. T. Chauhan, K. Xiao, S. Wuerger,"Chromatic and luminance sensitivity for skin and skinlike textures", Journal of Vision, Vol.19, No.1, pp.13, 2019.
  22. H. Xu, A. Sarkar, A. L. Abbott, "Color Invariant Skin Segmentation," in 2022 IEEE/CVF Conference on Computer Vision and Pattern Recognition Workshops (CVPRW), New Orleans, LA, USA, 2022, pp. 2905-2914.
  23. Z. H. Al-Tairi, R. W. Rahmat, M. I. Saripan, and P. S. Sulaiman, "Skin Segmentation Using YUV and RGB Color Spaces," Journal of Information Processing Systems, Vol. 10, no. 2, pp. 283-299, 2014. https://doi.org/10.3745/JIPS.02.0002
  24. B. Martinkauppi, "Face color under varying illumination - analysis and applications," Ph.D. dissertation, University of Oulu, 2002.
  25. K. Xiao, JM Yates, F. Zardawi, S. Sueeprasan, N. Liao, L. Gill, C. Li, S. Wuerger, "Characterising the variations in ethnic skin colours: a new calibrated data base for human skin," Skin Research and Technology, Vol.23, No.1, pp.21-29, 2017. https://doi.org/10.1111/srt.12295