DOI QR코드

DOI QR Code

Effect of black sand as a partial replacement for fine aggregate on properties as a novel radiation shielding of high-performance heavyweight concrete

  • Ashraf M. Heniegal (Civil Engineering Department, Faculty of Engineering, Suez University) ;
  • Mohamed Amin (Civil and Architectural Constructions Department, Faculty of Technology and Education, Suez University) ;
  • S.H. Nagib (Ionizing Radiation Met. Lab., National Institute of Standards) ;
  • Hassan Youssef (Civil Constructions Department, Faculty of Technology and Education, Beni-Suef University) ;
  • Ibrahim Saad Agwa (Civil Engineering Department, Faculty of Engineering, Suez University)
  • 투고 : 2022.11.05
  • 심사 : 2023.08.04
  • 발행 : 2023.09.10

초록

To defend against harmful gamma radiation, new types of materials for use in the construction of heavyweight concrete (HWC) are still needed to be developed. This research introduces new materials to be employed as a partial replacement for fine aggregate (FA) to manufacture high-performance heavyweight concrete (HPHWC). These materials include hematite, black sand, ilmenite, and magnetite, with substitution ratios of 50% and 100% of FA. In this research, the hardening and fresh characteristics of HPHWC were obtained. Concrete samples' Gamma-ray linear attenuation coefficient was evaluated utilizing a gamma source of Co-60 through the thicknesses of 2.5, 5, 7.5, 10, 12.5, and 15 cm. High temperatures were studied for HPHWC samples, which were exposed to up to 700℃ for two hours. Energy-dispersive x-rays and a scanning electron microscope carried out microstructure analyses. Magnetite as an FA attained the lowest compressive strength of 87.1 MPa, but the best radiation protection characteristics and the highest density of 3100 kg/m3 were achieved. After 28 days, the attenuation efficiency of concrete mixtures was increased by 6.5% when fine sand was replaced with black sand at a ratio of 50%. HPHWC, which contains hematite, black sand, ilmenite, and magnetite, is designed to reduce environmental and health dangers and be used in medicinal, military, and civil applications.

키워드

참고문헌

  1. Abid, M., Hou, X., Zheng, W. and Hussain, R.R. (2017), "High temperature and residual properties of reactive powder concrete-A review", Constr. Build. Mater., 147, 339-351. https://doi.org/10.1016/j.conbuildmat.2017.04.083.
  2. Adesina, A., de Azevedo, A.R., Amin, M., Hadzima-Nyarko, M., Agwa, I.S., Zeyad, A.M. and Tayeh, B.A. (2022), "Fresh and mechanical properties overview of alkali-activated materials made with glass powder as precursor", Clean. Mater., 3, 100036. https://doi.org/10.1016/j.clema.2021.100036.
  3. Agwa, I.S., Zeyad, A.M., Tayeh, B.A. and Amin, M. (2022), "Effect of different burning degrees of sugarcane leaf ash on the properties of ultrahigh-strength concrete", J. Build. Eng., 56, 104773. https://doi.org/10.1016/j.jobe.2022.104773.
  4. Akkurt, I., Akyildirim, H., Mavi, B., Kilincarslan, S. and Basyigit, C. (2010), "Gamma-ray shielding properties of concrete including barite at different energies", Progr. Nucl. Energy, 52(7), 620-623. https://doi.org/10.1016/j.pnucene.2010.04.006.
  5. Akkurt, I., Basyigit, C., Kilincarslan, S. and Mavi, B. (2005), "The shielding of c-rays by mortars produced with barite", Progr. Nucl. Energy, 46, 1-11. https://doi.org/10.1016/j.pnucene.2004.09.015
  6. Akkurt, I., Basyigit, C., Kilincarslan, S., Mavi, B. and Akkurt, A. (2006), "Radiation shielding of concretes containing different aggregates", Cement Concrete Compos., 28(2), 153-157. https://doi.org/10.1016/j.cemconcomp.2005.09.006.
  7. Amer, A. (2002), "Alkaline pressure leaching of mechanically activated rosetta ilmenite concentrate", Hydrometal., 67(1-3), 125-133. https://doi.org/10.1016/S0304-386X(02)00164-0.
  8. Amin, M., Hakamy, A.A., Zeyad, A.M., Tayeh, B.A. and Agwa, I.S. (2023), "Improving the brittle behavior of high-strength shielding concrete blended with lead oxide, bismuth oxide, and tungsten oxide nanoparticles against gamma ray", Struct. Eng. Mech., 85(1), 29-53. https://doi.org/10.12989/sem.2023.85.1.029.
  9. Amin, M., Hakeem, I.Y., Zeyad, A.M., Tayeh, B.A., Maglad, A.M. and Agwa, I.S. (2022), "Influence of recycled aggregates and carbon nanofibres on properties of ultra-high-performance concrete under elevated temperatures", Case Stud. Constr. Mater., 16, e01063. https://doi.org/10.1016/j.cscm.2022.e01063.
  10. Amin, M., Tayeh, B.A. and Agwa, I.S. (2020), "Effect of using mineral admixtures and ceramic wastes as coarse aggregates on properties of ultrahigh-performance concrete", J. Clean. Prod., 273, 123073. https://doi.org/10.1016/j.jclepro.2020.123073.
  11. Amin, M., Tayeh, B.A., Kandil, M.A., Agwa, I.S. and Abdelmagied, M.F. (2022), "Effect of rice straw ash and palm leaf ash on the properties of ultrahigh-performance concrete", Case Stud. Constr. Mater., 17, e01266. https://doi.org/10.1016/j.cscm.2022.e01266.
  12. Amin, M., Zeyad, A.M., Tayeh, B.A. and Agwa, I.S. (2021), "Effect of high temperatures on mechanical, radiation attenuation and microstructure properties of heavyweight geopolymer concrete", Struct. Eng. Mech., 80(2), 181-199. https://doi.org/10.12989/sem.2021.80.2.181.
  13. Amin, M., Zeyad, A.M., Tayeh, B.A. and Agwa, I.S. (2021), "Effects of nano cotton stalk and palm leaf ashes on ultrahigh-performance concrete properties incorporating recycled concrete aggregates", Constr. Build. Mater., 302, 124196. https://doi.org/10.1016/j.conbuildmat.2021.124196.
  14. Amin, M., Zeyad, A.M., Tayeh, B.A. and Agwa, I.S. (2021), "Engineering properties of self-cured normal and high strength concrete produced using polyethylene glycol and porous ceramic waste as coarse aggregate", Constr. Build. Mater., 299, 124243. https://doi.org/10.1016/j.conbuildmat.2021.124243.
  15. ASTM, C. (1988), "Making and curing concrete test specimens in the laboratory", Google Scholar.
  16. Attia, M.M., Abdelsalam, B.A., Amin, M., Agwa, I.S. and Abdelmagied, M.F. (2022), "Metal-nails waste and steel slag aggregate as alternative and eco-friendly radiation shielding composites", Build., 12(8), 1120. https://doi.org/10.3390/buildings12081120.
  17. Aziz, A., Sief, R., Ghieth, B. and Kaiser, M. (2020), "Black sand deposits, their spatial distribution and hazards along the northern coast of Sinai peninsula, Egypt", J. Appl. Geophys., 183, 104219. https://doi.org/10.1016/j.jappgeo.2020.104219.
  18. Azreen, N., Rashid, R.S., Amran, Y.M., Voo, Y., Haniza, M., Hairie, M., Alyousef, R. and Alabduljabbar, H. (2020), "Simulation of ultra-high-performance concrete mixed with hematite and barite aggregates using monte carlo for dry cask storage", Constr. Build. Mater., 263, 120161. https://doi.org/10.1016/j.conbuildmat.2020.120161.
  19. Baalamurugan, J., Kumar, V.G., Chandrasekaran, S., Balasundar, S., Venkatraman, B., Padmapriya, R. and Raja, V.B. (2019), "Utilization of induction furnace steel slag in concrete as coarse aggregate for gamma radiation shielding", Mater., 369, 561-568. https://doi.org/10.1016/j.jhazmat.2019.02.064.
  20. Binici, H., Sevinc, A. and Durgun, M. (2010), "Properties of barite, basaltic pumice, colemanite and blast furnace slag concretes", KSU J. Eng. Sci., 13(1), 1-13.
  21. Cullu, M. and Bakirhan, E. (2018), "Investigation of radiation absorption coefficients of lead-zinc mine waste rock mixed heavy concrete at 662-1460 kev energy range", Constr. Build. Mater., 173, 17-27. https://doi.org/10.1016/j.conbuildmat.2018.03.175.
  22. Cullu, M. and Ertas, H. (2016), "Determination of the effect of lead mine waste aggregate on some concrete properties and radiation shielding", Constr. Build. Mater., 125, 625-631. https://doi.org/10.1016/j.conbuildmat.2016.08.069.
  23. De Larrard, F. and Sedran, T. (1994), "Optimization of ultra-high-performance concrete by the use of a packing model", Cement Concrete Res., 24(6), 997-1009. https://doi.org/10.1016/0008-8846(94)90022-1.
  24. De Meijer, R., James, I., Jennings, P. and Koeyers, J. (2001), "Cluster analysis of radionuclide concentrations in beach sand", Appl. Rad. Isotop., 54(3), 535-542. https://doi.org/10.1016/S0969-8043(00)00196-2.
  25. Divyah, N., Prakash, R., Srividhya, S. and Sivakumar, A. (2022), "Parametric study on lightweight concrete-encased short columns under axial compression-comparison of design codes", Struct. Eng. Mech., 83(3), 387-400. https://doi.org/10.12989/sem.2022.83.3.387.
  26. Eid, M., Naim, G., Mahdy, A., Nada, N. and Mongy, S.A. (1994), "Application of icp aes to the determination of ree in egypt's black sand deposits", J. Alloy. Compound., 207, 482-486. https://doi.org/10.1016/0925-8388(94)90269-0.
  27. El-Zeadani, M., Saifulnaz, M.R., Hejazi, F., Amran, Y.M., Jaafar, M., Alyousef, R. and Alrshoudi, F. (2019), "Mechanics-based approach for predicting the short-term deflection of cfrp plated RC beams", Compos. Struct., 225, 111169. https://doi.org/10.1016/j.compstruct.2019.111169.
  28. Eltawil, K.A., Mahdy, M.G., Youssf, O. and Tahwia, A.M. (2021), "Producing heavyweight high-performance concrete by using black sand as newly shielding construction material", Mater., 14(18), 5353. https://doi.org/10.3390/ma14185353.
  29. Eltawil, K.A., Tahwia, A.M., Mahdy, M.G. and Abdelraheem, A.H. (2021), "Properties of high-performance concretes made of black sand at high temperature", Civil Eng. J., 7, 24-39. http://doi.org/10.28991/cej-2021-03091634.
  30. EN, B.S. (2009), 12390-7, Testing Hardened Concrete-Part 7: Density of Hardened Concrete, British Standards, 578.
  31. EN, B.S. (2011), 197-1. Cement-part 1: Composition, Specifications and Conformity Criteria for Common Cements, European Committee For Standardisation, London.
  32. Fillmore, D. (2004), "Literature review of the effects of radiation and temperature on the aging of concrete", Technical Report, USA.
  33. Gencel, O., Bozkurt, A., Kam, E. and Korkut, T. (2011), "Determination and calculation of gamma and neutron shielding characteristics of concretes containing different hematite proportions", Ann. Nucl. Energy, 38(12), 2719-2723. https://doi.org/10.1016/j.anucene.2011.08.010.
  34. Gencel, O., Brostow, W., Ozel, C. and Filiz, M. (2010), "Concretes containing hematite for use as shielding barriers", Mater. Sci., 16(3), 249-256.
  35. Gencel, O., Koksal, F., Ozel, C. and Brostow, W. (2012), "Combined effects of fly ash and waste ferrochromium on properties of concrete", Constr. Build. Mater., 29, 633-640. https://doi.org/10.1016/j.conbuildmat.2011.11.026.
  36. Gharieb, M., Mosleh, Y.A., Alwetaishi, M., Hussein, E.E. and Sultan, M.E. (2021), "Effect of using heavy aggregates on the high performance concrete used in nuclear facilities", Constr. Build. Mater., 310, 125111. https://doi.org/10.1016/j.conbuildmat.2021.125111.
  37. Gokce, H.S., Ozturk, B.C., Cam, N.F. and Andic-Cakir, O. (2018), "Gamma-ray attenuation coefficients and transmission thickness of high consistency heavyweight concrete containing mineral admixture", Cement Concrete Compos., 92, 56-69. https://doi.org/10.1016/j.cemconcomp.2018.05.015.
  38. Gokce, H.S., Yalcinkaya, C. and Tuyan, M. (2018), "Optimization of reactive powder concrete by means of barite aggregate for both neutrons and gamma rays", Constr. Build. Mater., 189, 470-477. https://doi.org/10.1016/j.conbuildmat.2018.09.022.
  39. Guo, Q., Chen, L., Zhao, H., Admilson, J. and Zhang, W. (2018), "The effect of mixing and curing sea water on concrete strength at different ages", MATEC Web of Conferences, 142, 02004.
  40. Hakeem, I.Y., Agwa, I.S., Tayeh, B.A. and Abd-Elrahman, M.H. (2022), "Effect of using a combination of rice husk and olive waste ashes on high-strength concrete properties", Case Stud. Constr. Mater., 17, e01486. https://doi.org/10.1016/j.cscm.2022.e01486.
  41. Hakeem, I.Y., Amin, M., Abdelsalam, B.A., Tayeh, B.A., Althoey, F. and Agwa, I.S. (2022), "Effects of nano-silica and micro-steel fiber on the engineering properties of ultra-high performance concrete", Struct. Eng. Mech., 82(3), 295-312. https://doi.org/10.12989/sem.2022.82.3.295.
  42. Hasan-Nattaj, F. and Nematzadeh, M. (2017), "The effect of forta-ferro and steel fibers on mechanical properties of high-strength concrete with and without silica fume and nano-silica", Constr. Build. Mater., 137, 557-572. https://doi.org/10.1016/j.conbuildmat.2017.01.078.
  43. Heniegal, A.M., Agwa, I.S., Youssef, H. and Amin, M. (2022), "Properties and durability of high performance heavy weight concrete incorporating black sand and different heavy weight aggregates types", NeuroQuantol., 20(8), 2056-2069. https://doi.org/10.14704/nq.2022.20.8.NQ44225.
  44. Heniegal, A.M., Amin, M., Nagib, S., Youssef, H. and Agwa, I.S. (2022), "Effect of nano ferrosilicon and heavyweight fine aggregates on the properties and radiation shielding of ultra-high performance heavyweight concrete", Case Stud. Constr. Mater., 17, e01543. https://doi.org/10.1016/j.cscm.2022.e01543.
  45. Hilal, M. and Borai, E. (2018), "Hazardous parameters associated with natural radioactivity exposure from black sand", Regul. Toxicol. Pharmacol., 92, 245-250. https://doi.org/10.1016/j.yrtph.2017.12.014.
  46. Horszczaruk, E. and Brzozowski, P. (2019), "Investigation of gamma ray shielding efficiency and physicomechanical performances of heavyweight concrete subjected to high temperature", Constr. Build. Mater., 195, 574-582. https://doi.org/10.1016/j.conbuildmat.2018.09.113.
  47. Jankovic, K., Stankovic, S., Bojovic, D., Stojanovic, M. and Antic, L. (2016), "The influence of nano-silica and barite aggregate on properties of ultra high performance concrete", Constr. Build. Mater., 126, 147-156. https://doi.org/10.1016/j.conbuildmat.2016.09.026.
  48. Jonsson, A. and Pazsit, I. (2011), "Two-group theory of neutron noise in molten salt reactors", Ann. Nucl. Energy, 38(6), 1238-1251. https://doi.org/10.1016/j.anucene.2011.02.013.
  49. Junior, T.A.A., Nogueira, M.S., Vivolo, V., Potiens, M. and Campos, L. (2017), "Mass attenuation coefficients of x-rays in different barite concrete used in radiation protection as shielding against ionizing radiation", Rad. Phys. Chem., 140, 349-354. https://doi.org/10.1016/j.radphyschem.2017.02.054.
  50. Kaiser, M., Aziz, A. and Ghieth, B. (2014), "Environmental hazards and distribution of radioactive black sand along the rosetta coastal zone in egypt using airborne spectrometric and remote sensing data", J. Environ. Radioact., 137, 71-78. https://doi.org/10.1016/j.jenvrad.2014.06.006.
  51. Kaplan, M. (1989), Concrete Radiation Shielding: Nuclear Physics, Concrete Properties, Design and Construction, Longman Publishing Group.
  52. Kharita, M., Takeyeddin, M., Alnassar, M. and Yousef, S. (2008), "Development of special radiation shielding concretes using natural local materials and evaluation of their shielding characteristics", Progr. Nucl. Energy, 50(1), 33-36. https://doi.org/10.1016/j.pnucene.2007.10.004.
  53. Khater, H., Ramadan, W. and Gharieb, M. (2021), "Impact of alkali activated mortar incorporating different heavy metals on immobilization proficiency using gamma rays attenuation", Progr. Nucl. Energy, 137, 103729. https://doi.org/10.1016/j.pnucene.2021.103729.
  54. Khatibmasjedi, M., Ramanathan, S., Suraneni, P. and Nanni, A. (2020), "Compressive strength development of seawater-mixed concrete subject to different curing regimes", ACI Mater. J., 117(5), 3-12. https://doi.org/10.14359/51725973
  55. Koksal, F., Bacanli, C., Benli, A. and Gencel, O. (2022), "Fresh, flexural and mechanical performance of polyamide and polypropylene based macro-synthetic fiber-reinforced concretes", Struct. Eng. Mech., 82(1), 93-105. https://doi.org/10.12989/sem.2022.82.1.093.
  56. Kosmatka, S.H., Panarese, W.C. and Kerkhoff, B. (2002), Design and Control of Concrete Mixtures, Portland Cement Association Skokie, IL.
  57. Liang, X., Wu, C., Yang, Y. and Li, Z. (2019), "Experimental study on ultra-high performance concrete with high fire resistance under simultaneous effect of elevated temperature and impact loading", Cement Concrete Compos., 98, 29-38. https://doi.org/10.1016/j.cemconcomp.2019.01.017.
  58. Lopez-Vasquez, A., Colina, J. and Machuca-Martinez, F. (2020), "Experimental dataset on preparation and characterization of black sand mineral-based as photocatalyst", Data Brief, 30, 105373. https://doi.org/10.1016/j.dib.2020.105373.
  59. Lv, Y., Qin, Y., Wang, J., Li, G., Zhang, P., Liao, D., Xi, Z. and Yang, L. (2022), "Effect of incorporating hematite on the properties of ultra-high performance concrete including nuclear radiation resistance", Constr. Build. Mater., 327, 126950. https://doi.org/10.1016/j.conbuildmat.2022.126950.
  60. M-19, A.C.C. (2019), Standard Specification for Chemical Admixtures for Concrete, Annual Book of Astm Standards, ASTM International West Conshohocken, PA.
  61. Ma, Q., Guo, R., Zhao, Z., Lin, Z. and He, K. (2015), "Mechanical properties of concrete at high temperature-A review", Constr. Build. Mater., 93, 371-383. https://doi.org/10.1016/j.conbuildmat.2015.05.131.
  62. Makarious, A., Bashter, I., Abdo, A.E.S., Azim, M.S.A. and Kansouh, W. (1996), "On the utilization of heavy concrete for radiation shielding", Ann. Nucl. Energy, 23(3), 195-206. https://doi.org/10.1016/0306-4549(95)00021-1.
  63. Masoud, M., Kansouh, W., Shahien, M., Sakr, K., Rashad, A.M. and Zayed, A. (2020), "An experimental investigation on the effects of barite/hematite on the radiation shielding properties of serpentine concretes", Progr. Nucl. Energy, 120, 103220. https://doi.org/10.1016/j.pnucene.2019.103220.
  64. Mostofinejad, D., Reisi, M. and Shirani, A. (2012), "Mix design effective parameters on γ-ray attenuation coefficient and strength of normal and heavyweight concrete", Constr. Build. Mater., 28(1), 224-229. https://doi.org/10.1016/j.conbuildmat.2011.08.043.
  65. Oto, B. (2013), "Gamma-ray shielding of concretes including magnetite in different rate", Int. J. Phys. Sci., 8(8), 310-314. https://doi.org/10.5897/IJPS2013.3854.
  66. Ouda, A.S. (2015), "Development of high-performance heavy density concrete using different aggregates for gamma-ray shielding", Progr. Nucl. Energy, 79, 48-55. https://doi.org/10.1016/j.pnucene.2014.11.009.
  67. Peng, G.F., Niu, X.J., Shang, Y.J., Zhang, D.P., Chen, X.W. and Ding, H. (2018), "Combined curing as a novel approach to improve resistance of ultra-high performance concrete to explosive spalling under high temperature and its mechanical properties", Cement Concrete Res., 109, 147-158. https://doi.org/10.1016/j.cemconres.2018.04.011.
  68. Prakash, R., Divyah, N., Srividhya, S., Avudaiappan, S., Amran, M., Naidu Raman, S., Guindos, P., Vatin, N. I. and Fediuk, R. (2022), "Effect of steel fiber on the strength and flexural characteristics of coconut shell concrete partially blended with fly ash", Mater., 15(12), 4272. https://doi.org/10.3390/ma15124272.
  69. Prakash, R., Raman, S.N., Subramanian, C. and Divyah, N. (2022), Eco-Friendly Fiber-Reinforced Concretes, Handbook of Sustainable Concrete and Industrial Waste Management, Elsevier, Woodhead Publishing.
  70. Prakash, R., Thenmozhi, R. and Raman, S. (2019), "Mechanical characterisation and flexural performance of eco-friendly concrete produced with fly ash as cement replacement and coconut shell coarse aggregate", Int. J. Environ. Sustain. Develop., 18(2), 131-148. https://doi.org/10.1504/IJESD.2019.099491.
  71. Prakash, R., Thenmozhi, R., Raman, S. and Subramanian, C. (2020), "Mechanical behaviour of polypropylene fibre reinforced concrete containing waste coconut shell as coarse aggregates and fly ash as partial cement replacement", Revista Facultad de Ingenieria Universidad de Antioquia, 94, 33-42. https://doi.org/10.17533/10.17533/udea.redin.20190403
  72. Prakash, R., Thenmozhi, R., Raman, S.N. and Subramanian, C. (2020), "Characterization of eco-friendly steel fiber-reinforced concrete containing waste coconut shell as coarse aggregates and fly ash as partial cement replacement", Struct. Concrete, 21(1), 437-447. https://doi.org/10.1002/suco.201800355.
  73. Richard, P. and Cheyrezy, M. (1995), "Composition of reactive powder concretes", Cement Concrete Res., 25(7), 1501-1511. https://doi.org/10.1016/0008-8846(95)00144-2.
  74. Saad, M., Agwa, I.S., Abdelsalam Abdelsalam, B. and Amin, M. (2022), "Improving the brittle behavior of high strength concrete using banana and palm leaf sheath fibers", Mech. Adv. Mater. Struct., 29(4), 564-573. https://doi.org/10.1080/15376494.2020.1780352.
  75. Sakr, K. (2006), "Effects of silica fume and rice husk ash on the properties of heavy weight concrete", J. Mater. Civil Eng., 18(3), 367-376. https://doi.org/10.1061/(ASCE)0899-1561(2006)18:3(367).
  76. Sayyed, M., Kaky, K.M., Gaikwad, D., Agar, O., Gawai, U. and Baki, S. (2019), "Physical, structural, optical and gamma radiation shielding properties of borate glasses containing heavy metals (bi2o3/moo3)", J. Non-Crystal. Solid., 507, 30-37. https://doi.org/10.1016/j.jnoncrysol.2018.12.010.
  77. Schoonen, M.A., Xu, Y. and Strongin, D.R. (1998), "An introduction to geocatalysis", J. Geochem. Explor., 62(1-3), 201-215. https://doi.org/10.1016/S0375-6742(97)00069-1.
  78. Shams, T., Eftekhar, M. and Shirani, A. (2018), "Investigation of gamma radiation attenuation in heavy concrete shields containing hematite and barite aggregates in multi-layered and mixed forms", Constr. Build. Mater., 182, 35-42. https://doi.org/10.1016/j.conbuildmat.2018.06.032.
  79. Shirmardi, S., Shamsaei, M. and Naserpour, M. (2013), "Comparison of photon attenuation coefficients of various barite concretes and lead by mcnp code, xcom and experimental data", Ann. Nucl. Energy, 55, 288-291. https://doi.org/10.1016/j.anucene.2013.01.002.
  80. Shuaibu, H.K., Khandaker, M.U., Alrefae, T. and Bradley, D. (2017), "Assessment of natural radioactivity and gamma-ray dose in monazite rich black sand beach of penang island, malaysia", Marine Pollut. Bull., 119(1), 423-428. https://doi.org/10.1016/j.marpolbul.2017.03.026.
  81. Singh, K., Singh, N., Kaundal, R. and Singh, K. (2008), "Gamma-ray shielding and structural properties of pbo-sio2 glasses", Nucl. Instrum. Meth. Phys. Res. Sect. B: Beam Interac. Mater. Atom., 266(6), 944-948. https://doi.org/10.1016/j.nimb.2008.02.004.
  82. Sohail, M.G., Kahraman, R., Al Nuaimi, N., Gencturk, B. and Alnahhal, W. (2021), "Durability characteristics of high and ultra-high performance concretes", J. Build. Eng., 33, 101669. https://doi.org/10.1016/j.jobe.2020.101669.
  83. SureshGandhi, M., Ravisankar, R., Rajalakshmi, A., Sivakumar, S., Chandrasekaran, A. and Anand, D.P. (2014), "Measurements of natural gamma radiation in beach sediments of north east coast of tamilnadu, india by gamma ray spectrometry with multivariate statistical approach", J. Rad. Res. Appl. Sci., 7(1), 7-17. https://doi.org/10.1016/j.jrras.2013.11.001.
  84. Tayeh, B.A., Zeyad, A.M., Agwa, I.S. and Amin, M. (2021), "Effect of elevated temperatures on mechanical properties of lightweight geopolymer concrete", Case Stud. Constr. Mater., 15, e00673. https://doi.org/10.1016/j.cscm.2021.e00673.
  85. Tekin, H., Sayyed, M. and Issa, S.A. (2018), "Gamma radiation shielding properties of the hematite-serpentine concrete blended with wo3 and bi2o3 micro and nano particles using mcnpx code", Rad. Phys. Chem., 150, 95-100. https://doi.org/10.1016/j.radphyschem.2018.05.002.
  86. Tufekci, M.M. and Gokce, A. (2018), "Development of heavyweight high performance fiber reinforced cementitious composites (hpfrcc)-Part II: X-ray and gamma radiation shielding properties", Constr. Build. Mater., 163, 326-336. https://doi.org/10.1016/j.conbuildmat.2017.12.086.
  87. Waly, E.S.A. and Bourham, M.A. (2015), "Comparative study of different concrete composition as gamma-ray shielding materials", Ann. Nucl. Energy, 85, 306-310. https://doi.org/10.1016/j.anucene.2015.05.011.
  88. Wang, D., Shi, C., Wu, Z., Xiao, J., Huang, Z. and Fang, Z. (2015), "A review on ultra high performance concrete: Part II. Hydration, microstructure and properties", Constr. Build. Mater., 96, 368-377. https://doi.org/10.1016/j.conbuildmat.2015.08.095.
  89. Wassef, S. (1981), "Distribution and properties of placer ilmenite in east rosetta beach sands, Egypt", Mineralium Deposita, 16(2), 259-267. https://doi.org/10.1007/BF00202739.
  90. Yang, R., Yu, R., Shui, Z., Gao, X., Xiao, X., Fan, D., Chen, Z., Cai, J., Li, X. and He, Y. (2020), "Feasibility analysis of treating recycled rock dust as an environmentally friendly alternative material in ultra-high performance concrete (uhpc)", J. Clean. Prod., 258, 120673. https://doi.org/10.1016/j.jclepro.2020.120673.
  91. Yu, R., Spiesz, P. and Brouwers, H. (2014), "Effect of nano-silica on the hydration and microstructure development of ultra-high performance concrete (UHPC) with a low binder amount", Constr. Build. Mater., 65, 140-150. https://doi.org/10.1016/j.conbuildmat.2014.04.063.
  92. Zeyad, A.M., Hakeem, I.Y., Amin, M., Tayeh, B.A. and Agwa, I.S. (2022), "Effect of aggregate and fibre types on ultra-high-performance concrete designed for radiation shielding", J. Build. Eng., 58, 104960. https://doi.org/10.1016/j.jobe.2022.104960.
  93. Zhang, D. and Tan, K.H. (2020), "Effect of various polymer fibers on spalling mitigation of ultra-high performance concrete at high temperature", Cement Concrete Compos., 114, 103815. https://doi.org/10.1016/j.cemconcomp.2020.103815.