DOI QR코드

DOI QR Code

합성섬유 및 바이오 폴리머를 혼입한 3D 프린팅 모르타르의 재료특성

Material Properties of 3D Printed Mortars Produced with Synthetic Fibers and Biopolymers

  • 김효정 (충남대학교 토목공학과 ) ;
  • 이병재 (대전대학교 토목환경공학과 ) ;
  • 김윤용 (충남대학교 토목공학과 )
  • 투고 : 2023.07.21
  • 심사 : 2023.08.07
  • 발행 : 2023.08.31

초록

3D 프링팅 출력물에서 발생할 수 있는 수축 균열을 저감하기 위해 합성섬유를 보강하고, 선인장의 줄기(cactus stem, CS)를 활용한 바이오 폴리머 혼화제를 혼입하여 제조한 3D 프린팅용 모르타르의 재료특성을 평가하였다. 셀룰로우즈계 혼화제 (methylcellulose, MC)의 대체재로 CS 10% 일부 치환할 경우, 타설방법과 상관없이 9.84~23.92% 압축강도가 증가하는 것으로 나타났다. 또한, 타설방법과 상관없이 Plain 대비 수축변화, 동결융해, 균열 저항성이 개선됨을 나타냈다. 이는 CS를 일부 치환함으로써 다당류 폴리머 구조가 증가되어 내구성이 개선되는 것으로 판단된다. 섬유 배합의 경우, 섬유의 종류 및 혼입량이 압축강도와 동결융해에 영향을 미치지 않는 것으로 확인되었다. 섬유 혼입에 의해 수축변화와 균열 저항성에 효과적인 것으로 나타났다. 종합적인 결과, 3D 프린팅 모르타르 배합시 MC 대신 CS 10% 일부 치환하고 섬유를 보강할 경우 섬유 종류 및 혼입량과 상관없이 내구성, 균열 저항성에 효과적인 것으로 나타났다.

In this study, synthetic fibers were applied to reduce shrinkage cracks that may occur in mortar produced by 3D printer. We used a biopolymer in powder form made from cactus stem (CS) as an admixture. The material properties of 3D printed mortar were experimentally evaluated. Replacing methylcellulose(MC) with 10% CS increases compressive strength by 9.84-23.92% regardless of the casting method. In addition, regardless of the casting method, shrinkage change, freeze-thaw resistance, and crack resistance are more effective than Plain. Incorporation of CS increases the polysaccharide macromolecular structure and improves durability. Mortars reinforced with synthetic fibers do not affect compressive strength and freeze-thaw. It is also effective for shrink deformation and crack resistance. Incorporating CS and fibers from 3D-printed mortar was found to be effective for durability and crack resistance.

키워드

과제정보

이 논문은 2020년도 정부(과학기술정보통신부)의 재원으로 한국연구재단의 지원을 받아 수행된 기초연구사업임(NRF-2020R1A2C1101465).

참고문헌

  1. Seo, J. S., Kim, H. J., and Kim, Y. Y. (2022), Performance Evaluation of Cement Composite Using Multi-Component Binder for Artificial Reef Produced by 3D Printer, Journal of the Korea Institute for Structural Maintenance and Inspection, 26(6), 139-147 (in Korean).  https://doi.org/10.11112/JKSMI.2022.26.6.139
  2. Moelich, G. M., Kruger, J., and Combrinck, R. (2020), Plastic shrinkage cracking in 3D printed concrete, Composites Part B: Engineering, 200, 108313. 
  3. Zhao, H., Ma, Y., Zhang, J., Hu, Z., Li, H., Wang, Y., and Li, Z. (2022), Effect of clay content on plastic shrinkage cracking of cementitious materials, Construction and Building Materials, 342, 127989. 
  4. Won, J. P., Hwang, K. S., and Park, C. G. (2005), Mechanical and Early Shrinkage Crack of Hydrophilic PVA Fiber Reinforced Concrete with Fiber Volume Fraction and Fiber Length, Journal of Civil and Environmental Engineering Research, 25(1A), 133-142. 
  5. Moelich, G. M., Kruger, P. J., and Combrinck, R. (2022), Mitigating early age cracking in 3D printed concrete using fibres, superabsorbent polymers, shrinkage reducing admixtures, B-CSA cement and curing measures, Cement and Concrete Research, 159, 106862. 
  6. Yang, J., Wang, R., and Zhang, Y. (2020), Influence of dually mixing with latex powder and polypropylene fiber on toughness and shrinkage performance of overlay repair mortar, Construction and Building Materials, 261, 120521. 
  7. Akindahunsi, A. A., and Uzoegbo, H. C. (2015), Strength and durability properties of concrete with starch admixture, International Journal of Concrete Structures and Materials, 9(3), 323-335.  https://doi.org/10.1007/s40069-015-0103-x
  8. Souza, M. T., Ferreira, I. M., Moraes, E. G., Senff, L., and Oliveira, A. P. N. (2020), 3D printed concrete for large-scale buildings: An overview of rheology, printing parameters, chemical admixtures, reinforcements, and economic and environmental prospects, Journal of Building Engineering, 32, 101833. 
  9. Shanmugavel, D., Selvaraj, T., Ramadoss, R., and Raneri, S. (2020), Interaction of a viscous biopolymer from cactus extract with cement paste to produce sustainable concrete, Construction and Building Materials, 257, 119585. 
  10. Martinez-Molina, W., Torres-Acosta, A. A., Martinez-Pena, G. I., Guzman, E. A., and Mendoza-Perez, I. N. (2015), Cement-based, materials-enhanced durability from opuntia ficus indica mucilage additions, ACI Materials Journal, 112(1), 165. 
  11. Vieyra, H., Figueroa-Lopez, U., Morales, A. G., V-porras, B., M-Martinez, E. S., and A-Mendez, M. A. (2015), Optimized Monitoring of Production of Cellulose Nanowhiskersfrom Opuntiaficus-indica (NopalCactus), International Journal of Polymer Science, Research Article. 
  12. Kim, H. J., Kown, K. S., Lee, K. Y., Lee, G. J., and Kim, Y. Y. (2020), Fresh and Strength Properties of Mortar Produced with Recycled Cactus Stem Powder, Journal of the Korean Recycled Construction Resources Institute, 8(3), 365-371 (in Korean).  https://doi.org/10.14190/JRCR.2020.8.3.365
  13. Xiao, J., Liu, H., and Ding, T. (2021), Finite element analysis on the anisotropic behavior of 3D printed concrete under compression and flexure, Additive Manufacturing, 39, 101712. 
  14. El Cheikh, K., Remond, S., Khalil, N., and Aouad, G. (2017), Numerical and experimental studies of aggregate blocking in mortar extrusion, Construction and Building Materials, 145, 452-463.  https://doi.org/10.1016/j.conbuildmat.2017.04.032
  15. Seo, J. S., Hyun, C. J., and Kim, Y. Y. (2022), Effect of polymer post-treatment on the durability of 3D-printed cement composites, Journal of the Korea Institute for Structural Maintenance and Inspection, 26(5), 20-29 (in Korean).  https://doi.org/10.11112/JKSMI.2022.26.5.20
  16. Han, C. G., Han, M. C., Yoon, C. W., and Sim, B.K. (2002), Setting and Mechanical Properties of Concrete Using Saccharic Type Super Retarding Agent, Journal of the Korea Concrete Institute, 14(4), 589-596.  https://doi.org/10.4334/JKCI.2002.14.4.589
  17. Na, S. H., Kang, H. J., Song, Y. J., and Song, M. S. (2010), Effect of superplasticizer on the early hydration ordinary potland cement, Journal of the Korean Ceramic Society, 47(5), 387-393 (in Korean).  https://doi.org/10.4191/KCERS.2010.47.5.387
  18. Lee, G., Han, D., Han, M. C., Han, C. G., and Son, H. J. (2012), Combining polypropylene and nylon fibers to optimize fiber addition for spalling protection of high-strength concrete, Construction and Building Materials, 34, 313-320.  https://doi.org/10.1016/j.conbuildmat.2012.02.015
  19. Mohan, M. K., Rahul, A. V., De Schutter, G., and Van Tittelboom, K. (2021), Extrusion-based concrete 3D printing from a material perspective: A state-of-the-art review, Cement and Concrete Composites, 115, 103855. 
  20. Chandra, S., Eklund, L., and Villarreal, R. R. (1998), Use of Cactus in Mortars and Concrete, Cement and Concrete Research, 28(1), 41-51.  https://doi.org/10.1016/S0008-8846(97)00254-8
  21. Yoo, J. C., Kim, G. Y., Lee, S. K., Hwang, E. C., and Nam, J. S. (2019), Effect of Polypropylene Fiber on the Freeze-Thaw Damage of Mortar, Journal of the Korean Recycled Construction Resources Institute, 7(4), 438-444 (in Korean). https://doi.org/10.14190/JRCR.2019.7.4.438